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PREFACE

The level of knowledge content given in this book is designed for the students who have
completed elementary mechanics of solids for stresses and strains associated with various
geometries including simple trusses, beams, shafts, columns, etc. At the successful completion
of understanding the content provided, the students will be able to reach a stage where
they can do self-directed learning at any further advanced level in the area of mechanics of
solids. The emphasis is given on the fundamental concepts for students to quickly follow
through for an advanced level if required in the future. Fracture mechanics is included in
this book with necessary preliminary steps for those who might have had difficulties with
the subject in the past.

The essence of mechanics of solids is lies in stress-strain analysis ultimately for the fail-safe
design of structural components. It is important to keep in mind that such analysis would
be useless without various criteria for yielding, failure, fracture, and fatigue. Materials
behaviour is more complex than some students might think. Materials fail sometimes at
higher or lower stress than the stress calculated. Some materials are more sensitive in failure
to stress concentration than some other materials. They fail sometimes in a ductile manner
and some other times in a brittle manner. The ductility of a material is not only a material
property but also is affected by its geometry and loading condition. One approach would
be applicable to some particular cases while the other approach is more appropriate for

some other cases.

Engineering practitioners will be able to find this book useful as well for the fail-safe design,

and for a way of thinking in making engineering decisions.

This book owes to the Lecture Notes developed for many years in the past. I would like to
thank Ms Carol Walkins of the Univerity of Newcastle, Callaghan, for typing in earlier years.
I am grateful to Mr Kam Choong Lee of PSB Academy in Singapore for the feedback on
Lecture Notes before I transformed that into this textbook, and for further proofreading of
the manuscript. Also, thanks go to Ms Haleh Allameh Haery of the University of Newcastle,

Callaghan, for assisting with some graphic material, invaluable feedback and proofreading.

Ho Sung Kim



1 STRESS AND STRAIN

L. .
(a) (b)

Figure 1.1 (a) A body subjected to uniform stress; and (b) one of cubes in ‘(a)’

subjected to uniform stress distribution.

1.1 STRESS AT A POINT

The stress components on a cubical element may be useful for describing fundamental relations
with reference to the coordinate system. The cubical element is one of building blocks constituting
the elastic body. Figure 1.1 (a) shows a body subjected to normal uniform stress distribution.
The body is assumed to consist of infinite number of cubical elements. Figure 1.1 (b) shows
one of cubes, representing a point in the body, in which nine stress components are used to

describe a stress state in terms of location, magnitude and direction:

o, T, T. Oy T, T
yx O-y T}’Z or T}’x O-W T}’Z
zx zy Gz sz sz Gzz

The first subscript of each stress component indicates plane and the second direction. The
nine stress components can be reduced to six components because some of stress components
are equal. This can be found by taking the summation of the moments (M) about z-axis,

y-axis and x-axis:
>M,=0 for z- axis,

To(Ady Az) Ax = 135 (AxAz) Ay (1.1)
and therefore 7,=17..

Similarly for x and y axes, 7.-z, and z.- z.. Consequently, the state of stress at a point can

be now described by six components: o, o, 0. Ty, T, T-.



1.2 RELATION OF PRINCIPAL STRESS WITH OTHER
STRESS COMPONENTS

K o (Principal stress)

zy

J
X

Figure 1.2 Stress components on a tetrahedron.

When a body subjected to external forces, a range of different planes may considered for
stress analysis. The planes where no shearing stresses but normal stresses exist are called
the principal planes. The normal stress on each principal plane is referred to as the principal
stress. Figure 1.2 shows the principal stress on area JKL as a result of choosing the coordinate

system in a particular orientation and for a particular position.

Let cosé = [, cos®s = m and cos® = n. The areas on the tetrahedron are found in relation
with A or area JKL:

Area KOL = A/ (or = A cos®))
Area KOJ = Am
Area JOL = An.

The principal stress (o) in Figure 1.2 may be related with the stress components by taking

the summation of the forces in x, y and z directions:

SF=0,
(0 - o)Al - TeAm - 7. An =0 (1.2a)
SF,~0,
-tydl + (- 6y)Am - ,;An =0 (1.2b)
SF.~0,

-7l - 1. Am + (6- 0;)An =0 (1.20)



These three equations are compacted for relations between the principal stresses and other

stress components:

(c-0) -1 -7 /
X yx zx
- Txy (o 70'y) - sz [m}: 0 (1 Zd)
-7 -7 (c-o )| "
Xz yz z

The direction cosines /, m and 7 can be eliminated from the three equations to find an

expression for o:
o’ -1c>+1,0-1,=0 (1.2¢)

where
I, =0, +0, +o0,
I, =00 +0c0.+00. —7> -1 —1° (1.2f)
2 x"y y oz x~7z Xy Xz vz .

_ 2 2 2
l,=0,0,0.+2r 7.7 -0,7, -0,7_—0.7,.

As seen in Equation (1.2¢), 11, I; and I; are not functions of direction cosines. They are

independent of the coordinate system location and therefore they are called the invariants.

1.3 STRESSES ON OBLIQUE PLANE
Any other planes than the principal planes may be called the oblique planes in which always

shear stress exists when subjected to external forces [Figure 1.3 (a)]. The total stress (S) on

the oblique plane can be resolved into three components (S, Sy, and S:) [Figure 1.3 (b)] and
§°= 87 +8,+S. (1.3a)

Taking the summation of the forces in the x, y and z directions yields:
S,=ol+r,m+7_n
S,=t,l+om+t_n (1.3b)
S.=tl+7,.m+o.n

The normal stress (,) may be found in terms of S, S, and S: [Figure 1.3 (c)] by projecting

the total stress components (Sx, S, and S:) onto the normal stress direction:
Oy = Sx l + Sym + Szn (1.3(:)

Also, §’=0/°+ 7 (1.3d)



Therefore, the shear stress is found as a function of principle (normal) stresses (o1, 02,

and o3):

7 =(o1-0) P’ + (o1-03) P’ + (00-03)° m’ n® . (1.4)

X

Figure 1.3 Stress components on oblique plane: (a) total stress, S, consisting of normal stress (0x)
and shear stress (7); (b) total stress components (Sy, Sy, and S.) in x, y, and z directions; and (c) normal
stress components of the total stress can be obtained by projecting total stress components onto the

normal stress direction.

The principal (maximum) shear stresses (t1, 12, and 13) occur at an angle of 45° with the

three principal axes as shown in Figure 1.4 and found to be

o, — O

7 = 22 3
0, — 03

7, = 5 (1.5)
O, — O

T, =—1—=.



G2

O3
(&)1 O1
o3
G| = [ O1
Tmax=T2=(01-03)/2
l 13=(01-02)/2
02
02
O1>02>03 -
G3

l 11=(02-63)/2
G2

Figure 1.4 The maximum shear planes at an angle of 45° with the three principal axes.
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The maximum shear stress criterion (or Tresca yield criterion) assumes that yielding occurs
o

-o
when the maximum shear stress (7. =%) reaches its yielding point. In the case of
uni-axial loading, the maximum principle stress (o) reaches its yielding point (o) so that

o, =0,,0, =0, =0, and the maximum shear stress becomes:

_61_0-3 _Gl_o_ays
Tax = - -
2 2 2

. (1.6)

Figure 1.5 Rubber modified epoxy showing cavities on fracture
surface. The arrow indicates fracture propagation direction and
the bar represents 10 pm. [After Kim and Ma, 1996]"

In general, the deformation of an element consists of volume and shape changes. The volume
change is a result of proportional change in element edge lengths. In contrast, the shape
change is a result of disproportional change in element edge lengths as well as element
corner angle change. The former is associated with volumetric modulus (X)) and hydrostatic
stress (or mean stress) while the latter is associated with shear modulus (G) and shear
stress. For example, the hydrostatic stress creates cavities during deformation as shown in
Figure 1.5 or increases the brittleness while shear stress contributes to the material flow.

The total stress for deformation consists of hydrostatic stress and stress deviator i.e.
Total stress = Hydrostatic (or mean) stress (om) + Stress deviator.

The hydrostatic stress or mean stress is defined as

O_m=£=O'X+O'y+O'Z=UI+O'2+O'3 (17)
3 3 3




and the szress deviator (o7;) can be found by subtracting the hydrostatic stress from the
total stress:

o, T, T. o, 0 0
w O, T.1-10 o, 0]=
_TZY TZ/V O-Z 0 O O-m
20,-0,-0,
3 T, T,
20,-0,—0O
—r x -z 1.8
z, g .. (1.8)
20,-0,-0,
sz Z-zy 3

This relation is graphically shown in Figure 1.6.

\‘+ V+Z/3
o (cz, oy to)

|
o Tz,
Tzx Bz
.“"‘v ’ Y
v‘J_, oy oo — (ox to, tor)/3
y Tyx /
M (ox +0y +0)/3

(ox-0y-20:)/3

Tzy

v

Tix

Figure 1.6 Superposition of stress components.

It can easily be shown that the stress deviator involves the principal shear stresses. For example,

, 20,-0,-0.
o =2 ) . (1.9)

3
If we choose principal stresses in the equation, the stress deviator becomes a function of
principal shear stresses,
20, -0, -0, _g(a1 -0,)+(0,—0y)

' 2
o, = 3 =3 5 —§(r3+r2) (1.10)




Similarly,

, 20,-0,-0, 2(o0,-0)+(0c,-0;) 2

o, = =— =—(—7,+7 1.11
(2o, - 2 er ) 1
, 20,-0,-0, 2(0;-0)+(0;-0,) -2

o, = == =—I(,+7 1.12
3 3 3 5 3 (7, +7) (1.12)

where 1, 1, and 13 are the principal shear stresses.

1.4 3D MOHR'’S CIRCLE REPRESENTATION

The three principal stresses (01, 02, 03) with the maximum shear stresses (1, 72, 73) can graphically
be represented as shown in Figure 1.7. The radius of each circle represents the maximum
(or principle) shear stress. Accordingly, Equation (1.5) can be found from the Mohr’s circle.

Figure 1.7 (a) shows a case of uni-axial
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om0 T1=12=0 13=25MPa

— b=50mpa o1

(a)

0:=0
R (¢
< —> =50 MPa G3 Gi
02
o= 50 MPa /
(b)
T
0:,=50 MPa
’C1=’Cz:‘t3=0
v L1 14 o
. — b /=50 MPa 61:(32:63:50MP3
oimsimPa | /

(©)

Figure 1.7 Various states of stress on elemental cube and Mohr's circles; (a) uni-axial tension;

(b) tension and compression without hydrostatic stress; and (c) hydrostatic stress without
shear stress.
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tensile loading (o1) with o:=03=0. If 03 varies from zero to -50MPa (compressive stress), the
principal shear stresses (7; and 7;) increase and becomes a state of stress where hydrostatic
stress is zero as given in Figure 1.7 (b), resulting in more chances for material flow or
high ductility than that of the case in Figure 1.7 (a) because of the increase in shear
stress. Figure 1.7 (c) is the limiting case where the three circles reduces to a point where
o1=0,=05=50MPa and the three principle shear stresses are zero. In this case, no material
ductility is possible in the absence of stress deviator. Therefore, it is theoretically possible to
have a stress state where the hydrostatic stress component exists without the stress deviator.
Examples for the state of stress where relatively large principal shear stresses are involved are
found in various processes in metal forming (e.g. wire drawing through a die) involving
lateral compressive stresses and a longitudinal tensile stress. Also, some localized deformation
of reinforcing particles on fracture surfaces of advanced materials is caused by such a state

of stress involving large shear stresses as shown in Figure 1.8.

Figure 1.8 Fracture surface of hollow microsphere reinforced epoxy
under plane strain in the vicinity of initial crack tip. Each hollow-
microsphere experiencedatensilestressinthedirection perpendicular
to the fracture surface and simultaneously lateral compressive
stresses. The crack propagation direction is from top to bottom. The
scale bar represents 100 um. [After Kim, 2007]?
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1.5 STRAIN AT A POINT

As previously discussed, the deformation is due to the volume and shape change. We need
to define the displacement components. When a point 2 moves to P'in coordinates x, y, z
as shown in Figure 1.9, respective %, v and w are called displacement components. To find
a general form of strain, let us consider first the length change using an element subjected
to a load in the x-direction as shown in Figure 1.10. When the load is applied, the solid
line becomes the dashed line. Accordingly, A moves to 4" and B moves to B’ and the x

direction normal strain of the infinitesimal segment is given by

ou
o AB dx ox

Similarly, the displacement derivatives for y and z directions can be found:

_Ov _ow

e, =—,e, =—.
Yoy oz

(1.13b)
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i i
1 1
Y l
i 7 ! ; *
1 7 1 //
' ,Z y+v K
I - /
1, ! ’
1/ ! .
----- X -moom Vo ztw
1 4
1 //
V)
_____________ x+uy ------------ s
Z
Figure 1.9 Displacement of a point P.
----------------- :
5 i
dy E :
1 1
1 1
1 1
Al :

<> | ut(du/dx)dx

dx+(du/dx)dx
=

dy

Figure 1.11 Angular distortion of an element.



For further displacement derivatives, let us consider a shape change using an element in the
xy plane, which is subjected to shear deformation as shown in Figure 1.11. The element
has undergone an angular distortion and thus the angular displacement derivatives along

the x and y axes are given by

BB"  ov
_BB" v 1.13
CTUB T (1139
and
€, = DD _u 1.13d
Y DA oy (1.13d)
respectively. Similarly, the rest of components can be found:
A e ad
e, e, e. & @& &
- I (1.13¢)
eif_ eyx e)’} eyz - & @} &
€x €5 € v v dw
& & &

In general, components such as e etc., other than those for length change produce both

x> €yx
shear strain and rigid-body rotation. For example, those given in Figure 1.12 (a) represent

1( cu

»
a pure rotation with an average of 2(@‘@} and Figure 1.12 (b) a pure rotation with an

average of %(%—%) Thus, the rigid body rotation components (a)l]) can be identified as:
I (a & 1(@ a'wj
0 14 N 1|4 oW
2l &) 2\& &
a)xx Xy a)xz
o0, o o |=1 X _a 0 [ _awy) (1.14)
q » yy y 2 d(f @/ 2 & @
G B O L(@_@j 1w _a .
_2 & &) 2\ & |




Accordingly, the strain components (&;) can be found by subtracting rigid body rotation

components (@,) from the displacement derivatives:

A 1(a & 1(0& a'wJ
= | A=A
Ok 2l & 2\ & &
gXX gX)7 8)(.7
e=|e. €  ¢€_|= 1|, & & 1 &+@ ) (1.15)
i g} gy} gy 2 @} df @/ 2 & @}
0T L(@ @j 1P o a
_2 & & 2la o V74
For short, __[i O’M_), g_:l[ au; +@] and are called the strain tensor and the rotation
&, ) & A,

tensor respectively. Also,

e;=¢&;t; (1.16)
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(a) (b)

Figure 1.12 Pure rotation without shear.
Referring to Figure 1.13, engineering shear strain components (7;) are defined as
yxy =exy +eyx =8xy +8ytx =28xy’ yxz =28,\'z’ yyz =28yz (1.17)

In summary, strain components are

ou ov ow
y - < . &, = gz =
Toox T oy 0z

_Ou Ov _Ou ow _Ov  Ow

I

b

+_7 ,(Z__+_, = —+ — (1.18)
. v "= "% T " T oy
Y
du |
e u-.....u...”-...“......u'...u.:-:
exy; V= €Exy A €yx
) —_—
)
| ) > |B X |

Figure 1.13 Engineering shear strain .

The volume strain (A) (see Figure 1.14) is defined as

_ Final volume - Original volume

Original volume



or

(1+e, )(l te, Xl + & )dxdydz — dxdydz

dxdydz
—(1+5 i+e, J1+e )1 (1.19)
e, &, tE,
for small deformation.
dz
%
| o

Figure 1.14 An elemental cube.

The mean strain or the hydrostatic component of strain, which contributes to volume change,
is also defined as
£ +e.+E ¢ A
g = v %2 Cu O (1.20)
3 3 3
Then, the strain deviator ('91'/') which contributes to shape change, can be obtained by

subtracting &, from each of the normal strain components:

3 g, £ (1.21)
2e, —¢, —¢, £,
& 3
26, —¢,—¢,
£, £ —_—
zy 3

In complete analogy between stress and strain equations, the principal strains are the roots

of the cubic equation:

&-1&+Le—1,=0 (1.22)
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where
I =¢ +¢, +¢,
_ 1 o5 2
IZ_gxgy+gygz+gzgx_2(7xy+}/zx+}/yz) (123)
1 1
Iy=6.6,6. 4 VoVl —Z(exyfy +e, ey

As already discussed for stress, 71, 1> and I3 are not functions of direction cosines. As such, they

are independent of the coordinate system location and therefore they are called ‘invariants’.

Also, the principal (engineering) shear strains are

Vi =86, =&,
72 = gl _83(: }/max) (124)
V3 =& &,
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2 LINEAR ELASTIC STRESS-STRAIN
RELATIONS

2.1 THE HOOKE'S LAW

The elastic stress (o) is linearly related to elastic strain (&) by means of the modulus of

elasticity (E) for the isotropic materials:
o =Fc¢. (2.1)

This relation is known as the Hooke’s law.

z

Figure 2.1 Deformation of an element subjected to a tensile force.

A tensile force in the x direction causes an extension of the element in the same direction.
Simultaneously it also causes a contraction in the y and z directions (see Figure 2.1). The
ratio of the transverse strain to the strain in the longitudinal direction is known to be

constant and called the Poisson’s ratio, denoted by the symbol v.

y z X - 2.2
, - 22)

The principle of superposition is then can be applied to determine the strain produced by
more than one stress component. For example, the stress o, produces a normal strain £,
and two transverse strains &,=—v¢, and €. =—Vé&,. Similarly, other strain components can
be found as listed in Table 2.1.



o vo vo
o, £, =— £, =——7> &, =——=
E E E

vo
_ vo, o, vy

Gy gx - - gy _- gZ -

E E E

vo vo o

o, £y =——= £, == Z &, =—
E E E

Table 2.1 Strain components for superposition.

Accordingly, the components of strain in the x, 3 and z directions are found:

oL, o, +0.)
g, :% [ay —vo. +0, )] (2.3)

The shear stresses acting on the unit cube produce shear strains independent of normal

stresses:

The proportional constant G is the modulus of elasticity in shear, or the modulus of rigidity.

Values of G are usually determined from a torsion test.

Another elastic constant is the bulk modulus or the volumetric modulus of elasticity (K). The
bulk modulus is the ratio of the hydrostatic stress or the hydrostatic pressure to the volume

strain that it produces

(o}

K=_m_"P_
A A (2.5)

1
B
where p is the hydrostatic pressure and S is the compressibility. It is applicable to both fluid
and solid.
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Some useful relationships between the elastic constants (£, G, v, and K) may be derived.

Adding up the three equations in Equation (2.3),

e te, + 52=Tv (O'x +o,+ JZ) (2.6)

It is noted that the terms on the left of Equation (2.6) is the volume strain (A), and the

terms (o, + 0, +0,) on the right is 35, Accordingly,

A= 7 30, (2.7a)
or
o E
K:—m:
A 3(-2v) (2.7b)

The following equation is often introduced in an elementary course of mechanics of solids

for a relationship between £, G, and v:

E

i)

(2.8)

Download
brochure
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Using Equations (2.7) and (2.8), other useful relationships can be found:

9K

VSV IR (299
Vzﬂy (2.9b)
2+2G/3K
GZM, and (2.9¢)
2(1+v)
E
T9-3E/G 2.9d)

2.2 CALCULATION OF STRESSES FROM ELASTIC STRAINS

The strains are measurable while the stresses can be calculated. It may be useful to have

stresses as functions of strains. From Equation (2.6),

o,t0,+t0.= (5x+5y+52)- (2.10)

1-2v
We eliminate & and & in Equation (2.10) using Equation (2.3):

& _1—0—_\}0 —1(0 +0, +0.) (2.11)
X E x E x y z/* .

Substitution of Equation (2.10) into Equation (2.11) gives:

= E s+ vE (gx te, +8Z) (2.12a)
v (1+v)1-2v) ’
where
F
v ) (2.12b)

(1+v)1-2v)

and A is known as the Lamé’s constant. Further, using the volume strain A=¢, +&, +¢&_,

and shear modulus (G):
o,=2Ge +AA. (2.13)

In this way, more relations can be found for other stress components (o, ,o,, and so on). It
may be timely to introduce the tensorial notation to deal with a large number of equations

and a specified system of components. All the stress components can now be expressed as

o= 2G81.j + ﬂsk,ﬁij (2.14)



where 7 and j are free indexes, k is a dummy index, and 9; is the Kronecker delta i.e.

Si=1if i=j
S =0if i#J.

The free index assumes a specified integer that determines all dummy index values. The
dummy index takes on all the values of its range. Upon expansion, Equation (2.14) gives
three equations for normal stress and six equations for shear stress using indexes for a range

of x, y and z. Equation (2.14) may be expanded in a matrix form:

1+2G ) )

o, 0 0 O] e,
o, A A+2G A 0 0 O0fc¢,
o, A A A+2G 0 0 O] &,
_ 2.1
T, 0 0 0 G 0 07, 2.15)
T, 0 0 0 0 G 0 7
7. L O 0 0 0 0 GJy., |
or by inversion
&, ] 1 v v 0 0 0 Jo,]
y -v 1 —v 0 0 0 o,
-v - 1 0 0 0
T o (2.16)
yo | E[ O 0 0 20+v) 0 0o |z,
¥ 0O 0 0 0  20+v) 0 |r
VZ “”Z
2 | 0 0 0 0 0 20+v) | 7., |

As previously discussed, the stresses and the strains can be broken into deviator and
hydrostatic components. The distortion is associated with the stress/strain deviator and its
stress-strain relation is given by
' E ' '
o =——¢,=2Geg, . (2.17)
i 1+v "7 /
Also, the stress-strain relationship between hydrostatic stress and mean strain components
in tensorial notation is given by

E

=g, =Kg,, .
Oy 3(1 ~ 2V) Ep=Rheéy (2.18)



2.3 PLANE STRESS AND PLANE STRAIN

Plane stress or plane strain is a state of stress/strain (Figure 2.2). An example is given for
plane stress in Figure 2.2 (a), in which two of the faces of the cubic element are free of
any stress. Another example is given for plane strain in Figure 2.2 (b), which occurs to the
situations where the deformations take place within parallel planes. In practice, the plane
strain often occurs internally within a structural component in which stress distribution is
non-uniform when stress raisers such as rivet hole and notch are present whereas the plane

stress occurs on its surfaces.

For a case of plane stress (o3 = 0 or o: = 0), Equation (2.3) becomes

1

& :E[Gl_vaz] (2.19a)
1

&, =E[0'2 —vo, ] (2.19b)
4

& 27[01"'02]- (2.19¢)
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MECHANICS OF SOLIDS AND FRACTURE LINEAR ELASTIC STRESS-STRAIN RELATIONS

Then, two stress-strain relations can be obtained by solving simultaneously two of the

equations:
o= E 5 (&, +ve,) (2.19d)
1-v
o'2=i2 (e, +ve,). (2.19¢)
-V
y (or 2) y (or 2)
<_
4_
4—
4—
e
z (or 3) z (or 3)

(@) (b)

Figure 2.2 Example for: (a) plane stress; and (b) plane strain (no displacement in the z-direction).
For a case of plane strain (g, =0),
E,=— [0'3 - v(O'1 +0, )]=0 (2.20a)
so that,
05 :V(O-l +0o, ) (2.20b)

Therefore, a stress exists even though the strain is zero in the z (or 1) direction. Substituting

this value into Equation (2.3), we get

1—v? v
& = E O'l—:O'Z (220C)
1—v? %
&, = o,——0, 2.20d
) oand
g =0 (2.20e)

2

1
Note that when and are replaced with v and z respectively plane stress
-

equations are obtained.



du

(a) (b)

Figure 2.3 (a) An elemental cube subjected to a tensile stress. (b) Force-displacement (P-du)

curve and strain energy.

2.4 STRAIN ENERGY

In general, the strain energy is graphically an area under a force-displacement (P-d#) diagram
(Figure 2.3). When an elemental cube is subjected to a tensile stress in the x-direction, its

elastic strain energy (A) is given by

dA = Pdu=L(o_a)(c.dx)
2 2 (2.21)
— (0.2, 4dx).

Equation (2.21) describes the elastic energy absorbed by the element volume (A4 dx). If we

define the szrain energy density (Ao) as the energy per unit volume, it is given by

2

O 2F (2.22)

Ly, L
2 FE 2°

AO:_ O-xgx:

[S—

Similarly, the szrain energy per unit volume of an element subjected to pure shear (7,,) is

given by

2
Txy:

" % 2G. (2.23)

1 1
AO:E To? =5

For a general three-dimensional stress distribution, it may be obtained by superimposing

the six components:

1
AOZE (O'x8x+0'y8y +0.6, +T 7 TV +T,.7 ) (2.24)
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or in tensorial notation,

A, = l0'..8...

To identify volume- and shape- dependent quantitative characteristics, we first find an
expression for strain energy per unit volume (Ao) as a function of the stress and the elastic
constants. Substituting the equations of Hooke’s law [Equations (2.3) and (2.4)] into
Equation (2.24), we find:

1

A0=E (o2 + ol +o’ )—%(axo-y +0,0,+0.0, )+ %(rfy +72 4 T;) (2.26a)

9K and V=1_2G/3K
1+3K/G 2+2G/3K
separate volume and shape dependent parts:

where E= . The strain energy density (A49) may be rewritten for

15+1

0 = 18K @(112—312) (2.26b)

where I, =0, + 0, + o, (first invariant) and /, = 0,0, + 0,0, + 0,0, (second invariant).
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The strain energy density (A,) can be found for incompressible materials i.e. K = oo:

1
A= [(0-1 _0-2)2 +(o, _0-3)2 + (o, _0-1)2]- (2.27)
12G
A uni-axial yield stress (5 ) can be related for the distortion energy (Ao) to be

1
A= —O'yzs for o, =0, 0, =0,and o, =0 when subjected to a uni-axial loading. Accordingly,

6G
Equation (2.27) becomes

2 2 2 2
2o-ys =(0,-0,) +(0,—03) +(0o,—0))" . (2.28)
This equation is known as the distortion energy criterion or von Mises yield criterion.

To find stress-strain relations involving the strain energy density, the following equation is

first found by substituting Equation (2.15) into Equation (2.24):
1 1
A0=§ AN + G(gf + g; +¢l )+ EG(;/jy +yl o+ y;) (2.29)

and then we find that the derivative of Ao with respect to any strain component gives the

corresponding stress component and vice versa. For example,

2A\

550 =IA+2Ge =0, (2.302)
an,

=IA+2G¢. =0
agy ¥y y (2.30b)
aAO:&A+2G52 =0, (2.30¢)
Oe,
or

N,

i, (2.30d)
Dy _, 2.30
é)Gy y ( . C)
N, = 2.30f
oo, a (2.306)

This mathematical concept is applicable to a large structural component for force-deflection

relation as described in the Castigliano’s theorem.



2.5 GENERALISED HOOKE'S LAW

The generalized Hooke’s law is not only for three-dimensional loading but also for all the

possible linear elastic material properties. It may be expressed as

€5 = Cyoy (2.31)
and

Gy = Siuu (2.32)

where Cyu is the compliance tensor and Sy is the stiffness tensor (physically elastic constants).

Equation (2.32) represents:

011=S1111€11 + Si12612 + S1113613 + S1121821 + S1122622 + S1123823 + S1131831 +
S1132832 + S1133833

012= 81211611 T S1202612 + S1213813 + S1221821 + 1222822 + S1223823 + S1231631 +
S1232832 + S123333

013=S1311611 + S1312612 + S1313613 T S1321821 + 1322622 + S1323623 + Si1331831 +
S1332832 + S1333833

021= 82111811 T 82112612+ S2113813 + S2121821 + 2122822 + S2123823 + S2131631 +
82132832 + 82133633

022= 82211811 + 82212812 + S2213613 + 82221821 + 82222822 + S2223823 + S2231831 +
82232832 + 82233833

023 = 82311811 T 82312612 + 2313813 + S2321821 + S23228622 + S2323823 + S2331631 +
82332832 + 82333633 (2.33)

031= 83111611 T S3112612 + S3113613 + S3121821 + S3122822 + S3123823 + S3131631 +
S3132832 + S3133€33

032= 83211611 T S3212612 + S3213613 + S3221821 + S3222822 + 83223825 + S3231631 +
83232832 + 83233833

033 = S3311811 T 83312612 + S3313813 + S3321821 + S33228622 + 3323823 + S3331631 +
83332832 + 83333633

We know that oj and & are symmetric tensors (& = &i, Cjusy = Cyjugi, 03= 0ji, 0= 0ji). This

leads to simplification of Equation (2.33):

011=S1111611 + S1122622 + S1133633 + S1123(2823) + S1113(2&13) + S1112(2612)
012= 81211811 T S1222622 + Si233833 + S1223 (2823) + S1213(2&13) + Si212(2&12)
013= 81311611 + S1322822 + S1333833 + S1323 (2623) + Si1313(2613) + S1312(2€12)
021= 82111811 + 82122822+ 82133833 + S2123 (2623) + S2113(2813) + S2112(212)
022= 82211611 T 82222622 + 82233833 + S2223 (2623) + S2213(2&13) + S2212(2&12) (2.34)
023 = S2311811 T 82322622 + S2333833 + S2323 (2823) + S2313(2813) + S2312(2812)
031= 83111611 + 83122822+ S3133833 + S3123 (2623) + S3113(2&13) + S3112(2E12)
032= 83211611 + 83220822 + 83233833 + S3223 (2623) + S3213(2613) + S3202(212)
033= 3311611 + S3322622 + 83333633 + S3323 (2823) + S3313(2813) + S3312(2812)
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or knowing engineering shear strain y (=2g),

o11=S1111&11 + S112282 + S1133633 + S1123 23+ S1113 Y13+ St12 Y12

023= 82311611 + 82320822 + S2333 £33 + 82323 Y23 + S2313 i3 + S2312 Y12 (2.35)
Similarly, Equation (2.31) is expanded as:
&11=Cr1011+ Cri22022+ Cr133033 + 2C1123 023+ 2C1113 013+ 2C1112 O12
(2.36)

y23=28&3=2C2311011 + 2C2322002 + 2C2333 033 + 4C2323 023 +4C2313 013+ 4Co312 012

vu---v---v---vv---vu---v---vv--vv--vv--vv---ov--vv--ov--ovv-ovv-cvv-cvv-coAlcateluLUcent @
www.alcatel-lucent.com/careers
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If contracted notation is used to follow the usual convention, only two subscripts instead
of four for compliance and stiffness tensors are sufficient and Equations (2.35) and (2.36)

are expressed as

o11= 81+ Si&2+ Si3&33 + Si4 23+ Sis yi3 + Sis yi2

022= 821611 + 822622 + 823633 + S24 Y23+ S25 Y13+ S26 12

033= 831611 + 832622 + S33 €33 + S34 y23 + S35 Y13+ S36 712

023= 84611+ S8+ Se3633+ Saa 123 + Ss5 v13+ Sas 112

o13= S51611 + S52622 + 53833 + S54 123 + S55 713 + Ss6 y12

012=S61&11 + S62822 + Ss3833 + Ss4 123 + Se5 713 + Ses y12 (2.37)
(021=Se1&11 + S62622 + S63633 + S64 123+ Ses5 Y13+ Se6 y12)

(031= 831611 + S328622 + S33833 + S34 y23 + S35 13+ S36 y12)

(03= S31611 + 832622 + S33633 + S34 123 + S35 Y13+ S36 712)

and

en=Cro+ Cron+ Ciso33+ Cry 023+ Cis 013+ Cis 012
&= Co1071 + C22022+ Ca3033 + Caq 023+ Co5 013+ Cas 012
&35= Cs1011 + Cs32002 + Cs3033 + Csq 023+ Cs5 013+ Cs6 012
123= Cq1011 + Cp2022+ Cy3 033 + Cyq 023 + Cy5 013+ Cys 012
y13= Cs1011 + Cs2022 + Cs3 033 + Cs4 023 + Cs5 013+ Css 012
y12= Ce1011 + Cs2022 + Co3 033 + Cs4 023 + Cps5 013 + Co6 O12.

(2.38)

It can be noted that the subscripts of coeflicients have been rearranged systematically: 11—1,
22—)2, 33—)3, 23—)4, 13—)5, 12—)6, 21—)6, etc and S320= S42, Si12—= S]z, Ciri= C]z, 2C531=
C41,4C2325= Cy4, etc.

The elastic stiffness and compliance constants are defined as

Ao Ao
Si=—, Se=—=, etc
Agll A}/ZS
and
Ag A
Ci=——, Cy= Vas , etc.
Ao, Oy

In general, S;= S; and Ci= Cj; for linear elastic materials. This can be easily shown as follows.

For

OA
0
5_ =o11=8n&n+ S+ Si3ess+ S 23+ Sis yis+ Sis yiz,
2

the second derivative is given by

——=38n (2.39a)



For

OA
6_0 = 022= 821611 F S22622 + S23833 + S24 23 + 825 Y13 + S26 712,
)

another second derivative is given by

0*A
— 0 =5 (2.39b)
0¢€,,0¢,,
Therefore,
O°A 0°A
0o _ 0 _§,= S, (2.39¢)

0¢,,08,, 08,08,

Now, we started with 36 elastic constants as given in Equation (2.37), but as a result of

analysis, these can be reduced to 21 independent elastic constants.

2.6 ELASTIC PROPERTIES DEPENDANT ON ORIENTATION

The elastic properties such as elastic modulus and Poisson’s ratio may be characterised by a
set of planes of symmetry in a particular orientation. Each plane of symmetry is defined as
a plane to which elastic properties are symmetric. A material having an infinite number of
sets of such planes in any orientation is called an isotropic material and otherwise is called

an anisotropic material.

3orz
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Figure 2.4 Orthotropic material: it has three mutually
perpendicular orientations for respective three sets of

planes of symmetry.



One of the important classes of engineering materials is one that has three mutually
perpendicular orientations for respective three sets of planes of symmetry. Materials in such a
class are called the orthotropic materials (see Figure 2.4). Examples for orthotropic materials
include unidirectional fibre reinforced laminates and highly textured cold rolled metal

sheets. For orthotropic materials, constants S; in Equation (2.37) and Cj in Equation (2.38)

reduces to
s, S, S, 0 0 O]
S, S, S, 0 0 0
g _ S, S, S, 0 0 0 (2.40)
"“lo 0 0 S, 0 0 e
0 0 0 0 S, 0
and 0 0 0 0 0 S,
‘c, ¢, ¢, 0 0 O]
c, ¢, C, 0 0 0
C = C|3 C23 C33 0 0 0 (240b)
1o o o Cc, 0 0
0O 0 0 0 C., 0
0 0 0 0 0 C,
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respectively. Thus, the stress-strain relations for an orthotropic material are given by

en=Ciom+ Crpoz+ Cr3033
&= Cr2011+ C202:+ Cr3033
&3= C3011 + Ca302: + C33033

y23= Cyq O3
y13=Cs5 013
v17= Cess5 012 (2.41a)

or

&=Cro:+ Cpoy+ Ciso:
&= Crox + C0oy + Ca0:

&= Cpor+ Crz0 + C330: (2.41b)
V:= Caa 7z
Yez= Css Tz
Yor= Co6 Ty

The constants in Equation (2.41) can be related to elastic moduli and Poisson’s ratios or
directly determined by conducting the tests. For example, stress components for a uni-axial

tensile test in the x-direction are given by: ¢ 20, 6, =0, and ¢ =0. From Equation (2.41),

1
&=Crox= E_ Ox, &= Ciz0;, &= C130;.
. . . 1
Accordingly, C;; is now determined to be a and further
e, & v, V.
Cp=—=—r=-—",and C;5=—=
0’( gXEX E’C EX
€ £ Qi : : : : :
where v, =—— and v, =-—=. Similar relationships can be obtained by applying stresses in
&

x x

different directions. Therefore,

1 VX’ sz
Cii=—, Cpn=-—2, Ci=-
E E, E.
1 V.
Ci= ——=, Cpp= —, Cy= ——=
Y E‘ EZ
2y 1
Cs1= ——=, Cso=— , C33= —
X y E:

1
Cpy=—o
44 G}.:
1
Css =—
G.Y:’
1
Cos =—.
66 G

&



Another class of materials are zransversely isotropic. When two of three sets of symmetry
planes for the orthotropic properties become an infinite number of sets, the properties are
called transversely isotropic. Figure 2.5 illustrates an example for a transversely isotropic material

using a unidirectional fibre reinforced composite. Therefore, E.=E., G,-=Gy,, and V= =Vs..

3orz
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2ory

Figure 2.5 Transversely isotropic material.

For isotropic materials, Ex=Ey, = E:=E, G:= G:= Gy=G and viy= Ve = vy =V =V .

Accordingly, the following equations can be recovered for isotropic materials:

eLfo, o, +a)

£, L [ay —v(o. +o, )] (bis 2.3)
€, _% [Gz - V(O-x + O-y )]

Ty :G7Xy, Ty =G7yz , 7.=Gy,. (bis 2.4).



3 CIRCULAR PLATES

The plates are meant to be subjected to the bending loads. Some examples for the use of
plates include pressure vessel end caps and piton heads. An analysis can be conducted for
the axi-symmetric loading with the benefit of the circular geometry. The analysis is based
on the linear stress distribution across the thickness. For a circular plate (Figure 3.1), x in

the coordinate system may be exchangeably used with 7 to indicate the radial direction.

\V Radial

; /x orr
r\
—J x z
Tangential
(a) (b)

Figure 3.1 (a) A circular plate. (b) An infinitesimal element for directions in the

axi-symmetric analysis.
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3.1 STRESS AND STRAIN

The general relations between stresses and strains previously discussed for isotropic materials

are applicable:
£, :é [(Tx - V(O'y +0. )]
€, :% [O'y — V(O‘Z +0, )] (bis 2.3).

The state of plane stress is also applicable to the circular plate. The stresses in the radial

(x) and tangential directions (z) in the current coordinate system (Figure 3.1) are given by:

E
O-le _ V2 (gx + ng)

(bis 2.19)

oo +ve.)

Figure 3.2 Cross section of circular plate.

The following procedure is given for finding strains (er and &) in above equations as

functions of slope (9).

In general, the following relation is applicable to pure bending of an infinitesimal element

having a liner strain distribution:

M

1
=— 3.1
EI R G.1)

where M is the bending moment, R is the radius of curvature, £ is the elastic modulus and

[ is the second moment of area.



The strain in the x-direction due to pure bending in x-y plane (Figure 3.2) is

_u
& = R (3.2)

xy

where # is the distance of any point from the neutral axis.

In general, the curvature (1/R) for small deflection (Figure 3.2) is given by

1 d’y

—= 3.3

R dx’ G-3)
and for a small angle,

dy _ tan 6 ~ 6 (3.4)

dx
Therefore, the curvature in the x-y plane is given by

1 d’y do
R, d¥ dx G5

1 .
| <<—Assumed circle

Figure 3.3 An exaggerated cross section of circular plate forming assumed spherical
deflection for small deformation when a couple (M) consisting of two equal and opposite
forces is applied.

and bending strain in radial direction in the circular plate (&) is given by

do
£ =u—. (3.6)



MECHANICS OF SOLIDS AND FRACTURE CIRCULAR PLATES

For a plate subjected to a couple (M) consisting two equal and opposite forces is applied
(Figure 3.3), the circumferential strain (¢,) at a (=&:), to which the distance from the neutral
axis is #, due to the pure bending:

:x+u9—x:ﬁ. (3.7)

z

X X

Thus, using the plane stress equation, the stresses in the radial (x) and tangential directions

(z) are found as functions of slope (0):

E Eu (do o
= e +ve )= — 4 v— 3.8
! l—vz( * Z) l—vz[dx xj (3-8)
and
Eu Eu (6 do
o.= . +ve, )= —+v—|. 39
T 1= ( : X) 1—v? [x dx) (3.9)

Equations (3.8) and (3.9) will be useful for finding stresses when the slope (0) and its

derivative are known.
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;E'fl

Unit length
-

Figure 3.4 A section of the circular plate.

3.2 BENDING MOMENT

Let us consider the small section of the circular plate with a unit length (Figure 3.4). From

the simple bending theory,

3
M_o 4 _ol_or
I u u 12u

(3.10)

where M is the bending moment per unit length, the bending moment (M,) due to the

stress in the radial direction (o),

3 3
M _O'xh _h E (d@_}_vgj:l)[ﬁ_FVQJ (311)

" 12u _El—v2 E X dx X
3

where D=h— E )
1212

Similarly, the bending moment (M:) due to the stress in the tangential direction (o:),

o do
M. :D(—w—j (3.12)
X dx
3
where D:h— £ .
121-v2

It is useful to know that, unlike beams, the bending moments (M, and M) here will be

eliminated rather than calculated.

3.3 SLOPE AND DEFLECTION WITHOUT BOUNDARY CONDITIONS

Consider an infinitesimal element in Figure 3.5 to relate deformation with the shear force

(Q) and then external forces such as concentrated force and pressure.



Figure 3.5 An infinitesimal element of circular plate.

The moments in the radial and tangential directions per unit length are M, and M- respectively

and Q is the shear force per unit thickness.
Taking the moments about the outside edge under the equilibrium:

(M, +dM ) (x+dx)d¢p — M xdp— ZMdesin(%d@ +Oxdgdx=0. (3.13)
Neglecting small quantities, this reduces to

M dx+dM x— M _dx+ Oxdx=0. (3.14)
and rearranging,

M
Mr+xd L M. =-0Ox. (3.15)

dx

To eliminate moments, substituting

do 0 dej (bis 3.11 & 3.12)

M. =D —+vg and M, =D| —+v—
dx X X dx

into Equation (3.15) yields,

2
d’0 1d0 6 _ 0 (3.16)

dx*  xdx x* D

or

i(l d(w)j:_g (3.17)
dx\x dx D’ '
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For a circular plate, it is convenient to replace x with 7 so that

dfld dy__Q
dr(r dr r dr)j D’ (3.18)

d
Note that “= and y in equation above are the slope (0) and the deflection respectively. The

following section will show how to relate Equation (3.18) with external forces.

3.4 A GENERAL AXI-SYMMETRIC CASE WHERE A CIRCULAR PLATE
IS SUBJECTED TO COMBINED UNIFORMLY DISTRIBUTED LOAD
(P) AND CENTRAL CONCENTRATED LOAD (F)

p

Figure 3.6 A circular plate subjected to pressure (p).
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A general axi-symmetric case where the pressure (p) is applied uniformly on the circular
plate is given in Figure 3.6 without boundary conditions yet. The shear force per unit length
(Q) may be found from the equilibrium at any radius (7):

pr

Qx27z7f:p><7z7fz—>Q:7 (3.19)

so that Equation (3.18) is related with an external load, pressure (p),

d(1d 6 dy 0 pr
Sl ey %' N [NEDII - i .20
dr(rdr(rdr)j D 2D 520
F
p

Figure 3.7 A circular plate subjected to pressure p and point force F.

Similarly, for the case (Figure 3.7) where both pressure (p) and central concentrated load (F)
on the circular plate are applied, the shear force per unit length (Q):

Q><27z7f:p><7z7f2+F—>Q:ﬂ+i (3.21)
2 2w
so that
d(1d d F |1
—(——(r—y) S i (3.22)
dr\rdr dr 2 2mr|D
d
To find the slope (d_y) and the deflection (), this equation may be integrated,
r
d  dy L ¢lpr F 1| pr’ Fr
P WL | P A A P LA P e
) DJ-[2 2727} : D{ 4 o T (3.23)
where C) is an integration constant. Integrating again,
3
U S (S W WS U= (3.24)
dr 16D 8zD 2 r
Then,
4 2 2
y=-L__ Fr (Inr—1)+ G +C,Inr+C;. (3.25)

64D 87D



The integration constants can be determined according to the boundary conditions as will

be introduced for different cases.

3.5 A CASE WHERE A CIRCULAR PLATE WITH EDGES CLAMPED IS
SUBJECTED TO A PRESSURE (P)

2R0 |

(a) (b)

Figure 3.8 Circular plate with edges clamped: (a) cross sectional view; and

(b) perspective view of plate.

To determine the integration constants in Equations (3.24) and (3.25) for the case where

a circular plate with edges clamped is subjected to a pressure (p) with /=0 (Figure 3.8):

P Cr C
BT M (6269
and
4 2
y:—gDJrCZ’ +C,Inr+C,. (3.26b)

The slope (0) is zero at r =0, then, C, should be zero if the slope 6 is not to approach
infinity near the centre of the plate. If the centre of the circular plate is taken as the origin,
deflection y = 0 at » = 0, and then (C;=0. At the clamped edge where » = Ry, 6 = dy/dr=0,
from Equation (3.26a),

__pl"3 +Q+g=_p_Rg+%=0
16D 2 r 16D 2
2
se =P (3.27a)
8D
Therefore, the three integration constants are determined.
The maximum deflection (yma) of the plate occurs at r = Ry:
R}  pR; R: pR;
ymax:_p 0+p 0o K _ Pl (3.27b)

64D 8D 4 64D
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To determine stresses (o, and o,) using Equations (3.8) and (3.9), the slope (0) is

determined first,

3
gL Gr G P gy (3.27¢)
16D 2 r 16D
and then,
do 4 2 2
— =—LY_3r*-R>. (3.27d)
dr 16D( o)
Therefore,
2 RZ
c,=0.= Euz(ﬁ+ sz Eu2 —ﬂ(3+v)+p—°(l+v) (3.28a)
1-v \Udx X 1-v 16D 16D
and
Eu (6 do Eu pr’ pRo2
= Zty—|= ——{+3v)+ 1+v) | 2
o l—vz(r vdrj | T1ep UM ep Y (3.28b)

[ ]
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The maximum stress (rmar) will occur at the edge at which » =Ry and at the surface where

u=h/?2,

3 pR;
O-rmax:_z h20 (328C)
and O takes place at =0 so that
2
o= PR, (1+v). (3.28d)

zmax 8h2

3.6 A CASE WHERE A CIRCULAR PLATE WITH EDGES CLAMPED IS
SUBJECTED TO A CENTRALLY CONCENTRATED LOAD (F)

F

y .

2Ro

> |
(a) (b)

Figure 3.9 Circular plate with a radius of R, subjected to a centrally concentrated load (F),
where edges of the plate are clamped: (a) cross sectional view; and (b) perspective view.

To determine the integration constants in Equations (3.24) and (3.25) for a case where a
circular plate with edges clamped is subjected to a centrally concentrated load (F) as given
in Figure 3.9, the slope (0) at the centre is zero at =0 so that C>=0. If the origin of the
coordinate system is taken as the centre of the plate, y = 0 at » = 0, therefore, Cs=0. Also,

to determine C;, a boundary condition is 6 = 0 at =Ry, therefore, from Equation (3.24),

i(21nr—1)=ﬁ—>c1 :i(lnRO —lj (3.29)

D 2 D\ 2 4

The maximum deflection (Vma) will occur at r=R;, according to the current coordinate
system, From Equation (3.25),

2

FR,

_ (3.30a)
167D

ymax

or

_3FR,’
4rEh’

Y max (l_vz)' (330]3)



To determine o, at r=R,, the slope (0) and its derivative need to be determined first:

b pt P cr ¢
dr 16D 8xzD 2 r

N L +i(21nR -1),
47D 87D ) 8nD

49 = —L(2lnr+2 2InR)) = —E(ln—+1)
dr 8D 8D R,

and

VQ: _ Inr |+ il InR, :i(lnRO—lnr).
4D 4D 4D

Therefore, from Equations (3.8) and (3.9),

_ Eu (dHJFVQJ:i Euz —(lnL+l)+v(lnRO—lnr)
dr r) 4aD1-v R,

r

and

o, = E”Z(Q+ ‘mj £ _Bu | (InR, —Inr)—v(In—+1) |.
1-v°\r dr 47zD1— R,

The stress distribution according to Equation (3.32a) is shown in Figure 3.10.

0 r\ Ry

Figure 3.10 Stress distribution in the radial direction.

3
Accordingly, the stresses are found at » =R, and u = h with D= f—zl E X
-V

v
dr r

O-r:RO =

Eu ﬁ 0\ 3F
27h*

(bis 3.24)

(3.31a)

(3.31b)

(3.31¢)

(3.32a)

(3.32b)

(3.33a)
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and

Eu (d@ 9) 3VF
_+ P

O.r,~ V—|=— . 3.33b
o1y ldr 27h* ( )
3.7 A CASE WHERE A CIRCULAR PLATE WITH EDGES FREELY
SUPPORTED IS SUBJECTED TO A PRESSURE (P)
p
Y ¢ ¢ ¢ A
| 2R()
(a) (b)
Figure 3.11 Circular plate with edges freely supported: (a) cross sectional view;
and (b) perspective view.
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To determine the integration constants in Equations (3.24) and (3.25) for a case where a
circular plate with edges freely supported is subjected to a pressure (p) as given in Figure 3.11,

the boundary conditions may be considered with:

: cr C
VN L (S A S LS (bis3.24)
dr 16D 8D 2
4 FZ 2
y:—6p;D—87:D(lnr—l)+C1: +C,Inr+C,. (bis3.25)

At r = 0, the slope (0) at the centre is zero and therefore C;=0 if the slope (8) is not to
approach infinity near the centre of the plate.

Again, if the centre of the circular plate is taken as the origin of the coordinate system,

deflection y = 0 at » = 0 and therefore C5=0

To determine C;, we consider that the bending moment (M,) is zero at any free support
(r = Ry). From

do 0
M, :D(—Jrv—j:O, (bis3.11)
dr r
we find,
do 0
—=-Vv—. (3.34)
dr r

Using Equations (3.34) and (3.24), we find,

a9 _ 3pr G
- = — 2 2
dr 16D 2| 3pr G _ f prt G (3.354)
o__ v G 16D 2 16D 2
r 16D 2
and
PR} \(3+V)
c | PR |G+v) 35b
‘ [8D](l+v) 0

The maximum deflection (Vmax) occurs at 7 =R, if we use the current coordinate system:

(PR (5+V)
Y max _[64DJ (d+v) (3.35¢)



with D=— , or
12112
3pR,
= 5+4v)1-v (3.35d)
Vmax 16Eh;( v)(1-v)

To determine stresses (0, and o) using Equations (3.8) and (3.9), we need to determine

the slope (0) and 62_9 first:
r

3 3 2
g:_ﬂ_ﬂ(21nr_1)+ﬂ+Q:_Pr +r(pR0\J(3+V)’ (3.36a)
16D 8zD 2 r 16D 1{16D )(1+v)
2 2
vg:—vpr +v PR, (3+V), (3.36b)
r 16D 16D )(1+v)
and
49 __3pr ([ pR\G+v)
dr 16D +(16D 1+v) (3.36¢)
Therefore, the radial stress (7,) is found,
Eu (dO 0 Eu pr’ PR;
= —+v—|= ——{+v)+| ——=|3+Vv) |
i l—vz(dr vrj 1—v2[ 16D( V) (16D( V) (3.372)
The maximum stress Omar occurs at r = 0,
Eu pr’ PR Eh/2( pR:
= P 3 L% \3 = 3 .
Ormax 1—v2( 160" +V)+[16D G = 1en O (3.370)
3
E
with D =h— = 0
21-v
3pR;
O max™ 8h2 (3 +V) (3383)

Similarly, the maximum stress in the tangential direction occurs at » = 0 and

2
szax= Grmax: (?)SP%J(:; + V)' (338]3)
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3.8 A CASE WHERE A CIRCULAR PLATE WITH EDGES FREELY
SUPPORTED IS SUBJECTED TO A CENTRAL CONCENTRATED
LOAD (F)

F

| 2Ro

(a) (b)

Figure 3.12 Cross section of a circular plate with a radius of R, subjected to a point force (F),
where edges are freely supported: (a) cross sectional view; and (b) perspective view.

To determine the integration constants in Equations (3.24) and (3.25) for a case where a
circular plate with edges freely supported is subjected to a central concentrated load () as
given in Figure 3.12, the boundary conditions may be considered with:

dy pr’  Fr Cr C,

D A Ly ST W L 2 bis 3.24
dr 16D 87zD( nr 1) 2 (bis 3.24)
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2

3 pr' 3 Fr?
64D 8nD

Cr

y= (lnr—1)+

+C,Inr +C;. (bis 3.25)

At =0, the slope (0) at the centre is zero and therefore ¢, = 0 if the slope (0) is not to

approach infinity near the centre of the plate.

Again, if the centre of the circular plate

is taken as the origin of the coordinate system,

deflection y = 0 at r = 0 and therefore C;=0.

To determine (,, we consider that the bending moment (M,) is zero at any free support

(r = Ry). As before, from,

M, :D(ﬁ+vQJ=O, (bis 3.11)
dr r
we find,
49 = —vg : (bis 3.34)
dr r
Using Equations (3.34) and (3.24) again,
do F 1 C 2F 1y C
—=———2Inr+2r——1|+—2t=-—"—|Inr+—|+—- .
dr SﬂD( nrren j 2 87rD(nr 2) 2 (3:392)
and
0 VF Cyv
—v—=—-2Inr-1)——.
= o5 2nr=1)-= (3.39b)
Equating these two equations with =Ry
F I-v
C,=——|2InR, + —|. .
1 47[D[ N L% 1+VJ (3.39¢)

The maximum deflection (y,,,,) occurs at the supports (» = Ry), if we use the current coordinate

system. From Equation (3.25), (p = 0, C>= C5=0)

FR) 3+v
_ .39d
Y = 62D 1+ v 9299
3
with D=h— £ or
12142
FR.: FR’ ~v?)  3FR,
y = 0 3+V_ 0 3+V12(1 Vo) 0 (3+V)(1_v)- (339@)

162D 1+v 167 1+v

Eh®  4nER°



This maximum deflection is approximately 2.5 times that of the plate with the clamped

edge for Poisson’s ratio v = 0.3.

To determine stresses (0, and o) using Equations (3.8) and (3.9), we need to determine

the slope () and 2—9 first. From Equation (3.24),
r

F Cr
@=——2rinr—r)+——(C,=0, p=0), 3.40
8ED(rrr) 2(2 p=0) (3.40a)
do F R 14
R S | % P U , 40b
dr 47Z'D( r l+vj (400
and
SOV L Ry (3.400)
r 4zD\1+v r
Accordingly,
R
o= Euz(ﬁ+vgj: Eu2 o (I1+v)In—2 (3.41a)
1-v- \ dr r 1-v* | 47D r
3
with D:h— £ or
121-v°
R
o, =XV | K (3.41b)
27h r

Note that o, is zero at the edge and infinite at the centre. In practice, the concentrated

load is on a finite area.

The stress in the z-direction,

Eu (9 d@}
o.= —tv—
T 1=vir dr
-- f‘;z {%((lw) ln%+(l—v)ﬂ (3.41¢)

3F R, .
0'2—27th H(l+v)ln7+(l V)j:| (3.41d)



3.9 A CASE WHERE A CIRCULAR PLATE WITH EDGES FREELY
SUPPORTED IS SUBJECTED TO A LOAD (F) ROUND A CIRCLE

<—
$zc
<—

(@ (b)

Figure 3.13 Circular plate with a radius of R, subjected to a load round a circle (F),

where edges are freely supported: (a) cross-section (b) perspective view.
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To determine the integration constants in Equations (3.24) and (3.25) for a case where a
circular plate with edges freely supported is subjected to a load (#) round a circle as given

in Figure 3.13, the boundary conditions may be considered with:

3 cr C
A A LA S TS L (bis3.24)
dr 16D 87D 2 r
4 2 2
yz_é;_g—rw(lnr_l)JrCZ +C,Inr+C,. (bis3.25)

There will be two sets of integration constants because of the discontinuity between two
parts. For the inner part of the circular plate, » < R;, p = F = 0. From Equation (3.25), the
deflection (y) is found to be

Clr2

y= +C,Inr+C, (3.42a)

and from Equation (3.24), the slope (0) is found as

_Gr, G

0 )
2 7

(3.42b)

If the centre of the circular plate is taken as the origin of the coordinate system, deflection

y = 0 at r = 0 and therefore C;=0. For non-infinite slope at the centre, C;=0.

Thus, the deflection (y) for the inner part of the circular plate (» < R)),

2
_Gr (3.43a)
4
and
C
0= 71r . (3.43b)

The constant C; is to be determined later.

For the outer part of the circular plate, » > Ry, another set of integration constants (C|,C3,

and C;) may be introduced and Equations (3.24) and (3.25) reduce respectively to

Cr C,
6’:Q=—i(21nr—l)+—lr+—2 (3.44a)
dr 87D 2 r
and
2 r.2
ye o)+ S sl (3.44b)




Now, four constants (C,,C/,C;, and C;) need to be determined and we need to find four
simultaneous equations. Inner and outer plate parts are common at » = R; for deflection
() and slope (0). Accordingly, equating Equation (3.43a) to Equation (3.43b), and Equation

(3.43b) to Equation (3.44b), two of the four simultaneous equations are found:

GR __FR, (2InR, —1)+ GR + G (3.45a)
2 7D 2 R,
and
2 2 ’ 2
GR™ _ IR (InR, —1)+Cli+c; InR, +Cj. (3.45b)
4 87D 4
Also, using
d
M, =D(—0+vgj, (bis 3.11)
dr r

with the common M, at » = R;, two more equations can be found.

For the inner part (F=0, r<R;) using Equation (3.42b),

C
=" (3.46a)
2
then,
0 _G (3.46b)
dr 2
and
9_6G i6
P (3.46¢)
For outer part (F#£0, 7>R;), using Equation (3.44a),
d—ez—i(2lnr+2rl—l +Q—C—22 (3.47a)
dr 87D r 2 r
and for ¥ =R,,

(ﬁj =—i(2lnR1+l)+g— C’; : (3.47b)
dr),_, 87D 2 R
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Also,
o__F (21nr—1)+5+c—22 (3.47¢)
r 87D 2 r
and for ¥ =R,,
(gj :—i(zlan —1)+Q+ sz . (3.47d)
r) . 8D 2 R,

Substituting Equations (3.46) and (3.47) into Equation (3.11) and then equating resulting
two equations:

G __F o+ Sy Cg
?(l+v)— 87ZD(21an(l+v)+(1 V))+ 2(1+v) R2(1 V). (3.48)

1

This is the third equation of the four simultaneous equations.

For one more simultaneous equation, we may use M, = 0 at the outside edge (» = Ry) with
Equation (3.11),

F C/ o
_%(ZInRO(l+v)+(1—v))+7(l+v) p (1-v)=0. (3.49)

2
1
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Thus, four simultaneous Equations (3.45a), (3.45b), (3.48), and (3.49) have been found

for four unknowns. The solution yields

_ 2 _ 2
C, = L(1+2ln&+ (1=v)(R zRI ) -R)), (3.50a)
47D R, (1+ V)R
_ 2 _ 2
c=L [omp, + TR -R) | (3.50b)
47D (1+V)R?
2
c! __FR (3.50¢)
87D
and
FR?
C.=—L(InR -1). 3.50d
3 87ZD(n =D ( )

The deflection (y) for the outer part of the circular plate, » = R; with the origin of the
current coordinate system at the centre of the plate, Equation (3.44b) yields:

2 2
Fr

'
1

y=—8”D(Inr—1)+ +Clnr+C; s
2 2 _ 2 p2 2 2 :
S L (P AL Y O 01 k) N ML
87D 4 47D (1+1)R: 82D 8aD
The maximum deflection (ymar) occurs at the supports (r =Ry) and is given by
F 3 - V 2 2 2 RO
ymax yr—RO 87Z'D |:( 2(1 + V) j( 0 1 ) 1 Rl :| ( )

The stress omar for this case occurs at » = R;. Using Equation (3.8),

R R, — R}
,'max=4j;hvz {2(1+V)111F0+(1—V) 0 — 1} (3.53)

1 0



3.10 A CASE WHERE AN ANNULAR RING WITH EDGES FREELY
SUPPORTED IS SUBJECTED TO A LOAD ROUND A CIRCLE (P = 0)

I
Foool
I
| R
| A : ll | VL v
O ! O
! Ry
| -~ |
(a) (b)

Figure 3.14 Annular ring with a radius of R, subjected to a load round a circle (F),
where edges are freely supported: (a) cross-section; and (b) perspective view.

The plate subjected to a load round a circle (p = 0) shown in Figure 3.14 is an annular
ring with edges freely supported. The following equations derived previously for the outer

part of the circular plate in Figure 3.13 is directly applicable for the annular ring:

‘9:?:_8%)(2lnr_1)+ C21F+C2 (bis 3.44a)
r r
and
2 1.2
y:—ZD (Inr—1)+ Cr +C} Inr+Cj. (bis 3.44b)

To determine constants in equation above, we may use M, = 0 at both » = R, and » = R, with

M, :D(ﬁ+vgj. (bis 3.11)
dr r

Differentiating Equation (3.44a),

49 = —L(2lnr+2rl—lj+g— sz
dr 87D r 2

, (3.54a)

then,

do F c C
— =———(2InR +1)+—L-—%
( dr jR 87D (@inR,+1) 2 R’ (3.54b)
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and
do F c C,
Ol o QmR, 1) 2 54
(drl& o5 2R, +1)+ = rE (3.54c)
Using Equation (3.44a),
O F e &4 &2, (3.54d)
r 87D 2 r
(v QJ - Y omR 1)+ &Y &Y (3.54¢)
), _x 8D 2 R
and
(vgj =Y (omr,-1)+ & &Y (3.54f).
r) . 8D 2 R,
Setting Equation (3.11) to zero for r = R;,
F C/ C
———RA+v)InR, +(1-V){+ —L(A+v)-—2(1-v)=0 .
S PAF VIR + (=)} + = (1+v) =S (1-v) (3.55)

1
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and for » = Ry,

2
0

F ol G
—%{2(1+v)lnR0+(1—v)}+?(1+v) p (1-v)=0. (3.56)

From the two simultaneous Equations (3.55) and (3.56), two of the three integration
constants are found to be
, F (1+v) R’R’> . R,

Cy=- In =2 3.57
* 4D (-v)R’-R’ R G573

and
1-v) 2(R;-R}) R
oo £ 1A= (20 ;)m—(’ ' (3.57b)
47D |(1+v) R, —R; R,
If we use the same coordinate system, y = 0 at » = R),
FR” | 1(1+ R, | R
=Ry M K Rl (3.57)
87D 2(1-v) R;-R R

More cases with different boundary conditions are shown in Figure 3.15. The maximum

stress (o, ) for all those cases can be in a generalised form given by

k pR:
max 152 ‘ (3583)
or
k F
max=}i—2 (3.58b)

where £, is a factor dependant on the boundary condition, Poisson’s ratio, and —. Likewise,

the maximum deflection (ymax) for the same cases is given by !

k,pR; (
=270 3.58¢)
Y max Eh*
or
k,FR;
max — (3.58d)
Y max Eh*

where k, is a factor dependant on the boundary condition, Poisson’s ratio, and FO
1
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Figure 3.15 Cross sections of various cases for different boundary conditions.
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4 FUNDAMENTALS FOR THEORY
OF ELASTICITY

In the elementary mechanics of solids, assumptions are used for simplification before
arriving at solutions. For example, a linear stress distribution is assumed for a beam or a
shaft. In the theory of elasticity, however, the stress distribution is to be found by satisfying
the equilibrium equations, compatibility equations, and boundary conditions without such

assumptions. It is a mathematical process.
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4.1 EQUILIBRIUM AND COMPATIBILITY EQUATIONS

o+ 00, dz

(2) (b)

Figure 4.1 (a) A body subjected to external forces. (b) One of the elements where stress varies from
one face to another.

For the stress variation within a elastic body [Figure 4.1(a)], let us consider one of the stress
elements given in Figure 4.1(b). To find the equilibrium equations, we need to consider the
forces acting on the element. The forces are found by multiplying the stress on any face by
the surface area. Also, we need to consider a body force though the centroid of the element
and having components X, Y, Z per unit volume. Taking the summation of forces in the x,

¥, z directions results in the following differential equations of equilibrium:

for x-direction,

0
do, L0, or., L X=0: (4.1)
ox oy Oz

for y-direction,

oo, Ot ot
Y Y 24y =0; (4.2)
oy ox oz

for z-direction,

0
oo, + O + 0T +7Z=0. (4.3)
oz oy ox




Also, the body forces are given by

X=-= 4.4

o (4.4)
oQ

Yy =——"2, 4.
P (4.5)
o0Q

Z=-"" ,
> (4.6)

where Q is called the potential function. The body forces are to deal with gravitational forces,
magnetic forces and/or inertia forces. The force of one body acting on another by a direct
contact is the surface force. It may be noted that the equilibrium Equations (4.1-4.3) do not
provide a relationship between the stresses and the external loads, although they give the
rate of change of the stresses at any point in the body. One of the requirements to establish
such a relationship is that the deformation continuity of each element must be preserved.
This means that the displacement in components must be continuous and single-valued
functions. Certain relationships between the strain components must be satisfied to meet
the requirement. These relationships are called the equations of compatibility. The relationship

between the stresses and the external loads is required to also satisfy the boundary conditions.

To derive the equations of compatibility, let us consider the strain-displacement relations

previously given in Equation (1.18):

ou

gx_a_x7 (a)
ov

€y=5, (b)
ow

82_55 (C)
ou Ov

}/xy_a a, (d)
_ou ow )

0z ox
_a_v+6_W ()

Ve = oy g

To eliminate the displacements from the above equations, we differentiate Equation (a) twice
with respect to y and Equation (b) twice with respect to x and Equation (d) once with

respect to x and then once with respect to y results in the following compatibility equation,

0’e, . o’e, _ 0%y,
oy? fore ooy

4.7)
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Thus, the compatibility equations are to establish relationships between different strain

components as well.

Two additional compatibility equations may be obtained in a similar way:

O, 0% 07,
oz oy oyoz
o’c. 0¢, 0Oy
2 T2 T :
ox oz 0x0z

(4.8)

4.9)

The following equations may be found from Equation (1.18) for more compatibility equations:

os o’u
— =, (4.10)
0y0z  Ox0y0z
o o’u o’y
Yy _ TR 4.11)
Ox0z  OxOyOz O xOy
0’ o’u o*w
Ve _ c v (4.12)
Ox0y  0Ox0Oy0Oz 0O X0y
oy, v Ow
—E—m . (4.13)
ox Ox"0z 0" x0y
| 4
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We may add Equation (4.11) and Equation (4.12) together and then subtract Equation
(4.11) to get
Oy 0 OVe_, O

=2 . 4.14
ox0z  0Oxdy  Ox° Ox0y0z (4.14)

From Equation (4.10) and Equation (4.14), we find a compatibility equation,

2 0 0

206 _Of P [ Oe [T | (4.15)
oyoz Ox Ox oy 0z

Similarly, zwo more compatibility equations can be found:

0’ 0 0

208 O _0re Oy OV (4.16)
Ox0z 0Oy oy 0z ox

2 0 0

2682:2— £ 7”+a7/*'z : (4.17)

oxoy Oz 0z ox oy

4.2 AIRY’'S STRESS FUNCTION

As discussed, to find equations for stress distribution on a solid body, any candidate equations
are required to satisfy the boundary conditions, equilibrium equations and compatibility
equations. This procedure can be simplified using the Airys stress function (®) which is
defined by the following three equations:

2
s.=2%.0 (4.18)
X ayz
2
0, =23+ (4.19)
X
2
. =—2 ;D . (4.20)
= o

The three equations above containing the Airy stress function (®) satisfy the equilibrium
equations for two dimensional cases. Thus, the procedure for finding equations for stress
distribution involves finding the Airy stress function (@) and satisfying the compatibility
equations. The compatibility equations and Airy stress function (®) will be further discussed

in relation with plane stress and plane strain.



4.2.1 PLANE STRESS

Equations (4.18)—(20) are substituted into the following equations for plane stress
(Gz :T)z :Tyz :O))

£ = %(ax —vo,) (bis 2.19)
|

g=Ekg—wg) (bis 2.19b)

gz—%&g—q) (bis 2.19¢)
1 2(1+v) .

7).3/ = ET)Q/ = Trxy (blS 2.4 & 2.8)

and then into the compatibility equation (4.7) to obtain

+2 + +
ox* ox’oy:  oy! ox® oy’

4 4 4 2 2
A o' a®=_(1_v)(ag GQ). 4.21)

The symbol V is called del operator and V* is called the biharmonic operator defined as

o* o* o*
V= +2 + 4.2
ox* ox’oy® oyt 422
and V2 is called the Laplacian operator defined as
2 2
v2=82+62. (4.23)
ox” Oy
Thus, Equation (4.21) becomes
Vo =-(1-V Q (4.24a)

Note that no use has been made of the remaining five comparibility equations. Two of these
vanish because of the stress field here is independent of z but the other three will not be
satisfied. However, the stresses above are known to be good approximations. For the case

of zero body forces Equation (4.24a) reduces to the so called the biharmonic equation:

Vd =0. (4.24b)
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4.2.2 PLANE STRAIN

We employ the same Airy stress function ®(x, y) [see Equations (4.18)—(4.20)] as for the

plane stress case in conjunction with the following relations for plane strain (&= 0):

o, = V(O'x + O'y) (bis 2.20b)
4,2
. EV (Gx - iay] (bis 2.20¢)
1-v? v :
£, = E (O'y T O'xj : (bis 2.20d)

For the plane strain case, five of the compatibility equations are satisfied, leaving only

2 ol 0?
Equation (4.7), o’ L85 9Ty
8y2 ox? Oxoy

Equations (4.15), (4.16) and (4.17), we obtain

, to be considered. If we consider the compatibility

1
V= VQ. (4.24c¢)
1-v
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When there are no body forces, the same bibarmonic equation as that for plane stress is

obtained as
Vo =0. (4.24d)

Therefore, to find the equation for a stress distribution, we need to find an Airy’s stress

function with the biharmonic equation satisfied.

The following is an example for using the Airy stress function to find equations for stress
distribution. A case is given in Figure 4.2, in which the pressure p varies along the bar. The
stress function ® = By* may be considered for it (B is a constant). It is found that The stress
function satisfies the bibarmonic equation (V*®=0) and therefore produces the following

equations for stress distribution:

B

c,=—=06By, (4.25a)

2
o, = ‘Z ®_0,and (4.25b)

X

RL0)

=— =0 4.25

T Ox0y (4259

To determine the constant (B), boundary conditions are used:

ox =pa=0aty=0

and
ox = 6Bl = pp at y=L.
Accordingly, B = % and therefore the stress distribution is described by
o 20 6By=p, . (4.25d)

: 6y2_ /



,ullum

A X

Figure 4.2 A bar subjected to a linear stress distribution.

For many problems, the stress function may be possible to be in the form of the following
polynomial expression:

® = Ax*> + Bxy + Cy*

+Dx’ + Ex’y + Fxy* + Gy’

4 3y 2} 2 g 3 4 (4.26)

+ Hx" +Jx’y+ Kx“y" + Lxy” + My

+ N+ Px'y+ Oy + Ry + Soyt + Ty +
Terms containing x or y up to the third power satisfy the biharmonic equation. However,
terms containing higher powers remain in the bibarmonic equation. Those terms can be

sometimes vanished by relating associated coefhicients.

4.3 APPLICATION OF EQUILIBRIUM EQUATIONS IN PHOTO-
ELASTIC STRESS ANALYSIS

The equilibrium equations may be useful for photo-elastic stress analysis.
For example,

x4 Pl + x4+ X =0 (bis 41)

can be rewritten for plane stress as

00, ,%%n _ 4.2
x oy = (4.27a)




and rearranging,

or,,
do,=——=dx. (4.27b)
oy

Therefore, the normal stress in the x-direction may be obtained by integration

or
o :—I Zdx +c (4.27¢)
oy

where ¢ is an integration constant.

Accordingly, a stress difference (Ao ) between any two points (xy and x) is found to be,

Ac =—j . (4.27d)

For numerical calculation, if a stress at the point xo, (5 ) _ is known, then the stress at

X=X

the point x (0,) can be translated into

n ATW

o =), -2

T Ay

Ax. (4.27¢)
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Equation (4.27¢) may be practically useful in conjunction with photo-elastic stress analysis

for finding stress values.

Photoelasticity has been used as an experimental method for finding stress distributions on
various geometries. It is based on a material property called birefringence (double refraction)
which reacts to stresses. In practice, there are two types of patterns on the model for stress
analysis may be used —isoclinic and isochromatic. As shown in Figure 4.3(a), an isochromatic
is the locus of the points, along which the difference between major and minor principal
stresses is constant while an isoc/inic is a locus of points at which the principle stresses are
all in the same direction. The loci appear on the photoelastic model in a form of lines called

[fringes — isoclinics appear in black and isochromatics in other colours as shown in Figure 4.3(b).

(a) (b)

Figure 4.3 (a) Isoclinics with the principle stress directions — the principle stress directions of each

point are inclined at a constant angle to x and ) axes. (b) Fringes on a plate with a hole.

When a ray of plane polarized light pass through a photo-elastic material model, it resolves
along the two principal stress directions and each of these components experiences different
refractive indices as they travel at different velocities within the model. When the light
comes through the analyzer (Figure 4.4), the phase difference or relative retardation (R) in

wave lengths between the two resolved rays is given by’
R=Ct(o, -0,)=2Ctr, (4.28a)

where C is a constant known as the stress optic coeflicient, # is the thickness of the model

plate, and ¢, and ¢, are major and minor the principal stresses.



Light source

Polariser

Analyser

Eye

Figure 4.4 A photoelasticity arrangement to view a fringe pattern on the model. The fringe pattern
viewed is due to the plane polarized light. Each fringe is a locus of isochromatic points at which the

difference between two principal stresses or the maximum shear stress is constant.

When a material of birefringence is stressed, fringes are created. Fringes for stress may be
similar to contour lines on a map where a close spacing between contour lines indicates a
high slope and vice versa. Each fringe line is a locus of points of constant difference between
the major (o,) and minor (o) principal stresses and can be used for stress calculation using

nf
o, -0, = " (4.28b)
where 7 is the fringe number or fringe order, fis the model material fringe value, and 7 is
the model thickness.

Equation (4.28b) can be used for finding shear stress (z,,) with the stress relation in

Figure 4.5.

02

o]

X

Figure 4.5 Principal stresses with other stress components.



A relation according to the equilibrium in the x-direction (Figure 4.5) is
o, sianos@—rxy —0,c0s0sinf=0 (4.28¢)

so that

7, = %sm 20 (4.28)

In practice, the variables in Equation (4.28d) can be measured from the photo-elastic

experiment and then stress at any point can be calculated according to Equation (4.27¢).

Further, the stress distribution for a three- dimensional model or real component can be
obtained using the same theory if reflective surface and photo-elastic coating are used as

shown in Figure 4.6.
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Component  Reflective
or model /surface

O Light source

S

Eye

coating

Figure 4.6 A photoelasticity arrangement for a three dimensional component or model.

4.4 STRESS DISTRIBUTION IN POLAR COORDINATES

The polar coordinate system is useful for some particular geometries such as cylinder and
circular plates. Stress components on an infinitesimal element in polar coordinates are given

in Figure 4.7.

X

Figure 4.7 Stress components on an infinitesimal element in the polar coordinate system.



The equilibrium equations in radial and tangential directions are given by

Iz

or r 00 r

100y , 0% 5% 7 _g (4.30)
r 00 or 7

oo, 1lor, L 9,79

+R=0 (4.29)

where R is a radial body force and 7 is a tangential body force.

The normal stress distributions in radial and tangential directions and shear stress are given by

o 1 oP +i82_<1) (4.31)
"ror r?oo*’ '
R
=5 > 4.32
O-H 8}”2 ( )
2
.= 1 aq>+1 o*d 0 (1 GCDJ (4.33)
r* 00 r 8r60 81’ r 06
where @ is the Airy stress function.
The biharmonic equation without the body force is
N CR NI W SR -
6r2 ror r*o60* \or* ror r*o6* '

4.4.1 THICK WALLED CYLINDER

The Airy stress function for the general continuous axi-symmetric stress distributions
independent of 0 can be found by solving the bibarmonic equation (4.34). The biharmonic
equation independent of 8 is given by

0 10\ o*d 10D
VH(VHD = +—— + = 0 4.
V) (8 S 87’}( or* r or J (4.35)

or

(4.36)

4 2
V2(V2)D = [2?4_25‘1) 1 07D l@@] 0.

I r or’ r2 or:  r or

Solving the differential equation,

® = A+Blnr+Cr’ +D(Inr)r. (4.37)
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Consequently, the normal stress distributions in radial and tangential directions and shear

stress are given by

o, =212, (4.38)
r
-B
0y =—5 +2C (4.39)
7,,=0. (4.40)

The stress distributions for a thick walled cylinder shown in Figure 4.8 may be determined
using the following boundary conditions when pressures exist both internally (p;) and
externally (po):

O, =—D;at r=r;

O,=—P,at r=rg

7,, =0 at both r=r; and r=r.
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Po

; N

Figure 4.8 Thick walled cylinder cross section with

an internal pressure (p;) and an external pressure (Po).

Therefore,

2.2 2 2
o, :£+2C:(pi_p0)r0 4 +p()r;) — D%

2 2 2 2 2
r re(T-r") (rn"=r")

and

B (p.—p '’ pr—pr
00:__2+2C:_ 12 20 021 + 002 211 .
: e S

4.4.2 STRESS DISTRIBUTION FOR AN INFINITELY LARGE THIN PLATE WITH A

SMALL CIRCULAR HOLE

y
—f— —
——— —
0 —-— [C] 5\

X

—~—— e
2

-~ Ié| —
—g— —l—

Figure 4.9 An infinitely large thin plate with a small circular hole.

(4.41)

(4.42)



The Airy stress function @ for the stress distribution for an infinitely large thin plate with

a small circular hole (Figure 4.9) is found to be

2
r

2 252
D= %{1’2 _2A2 lnr_wcosza} (443)

where o is a uni-axial tensile stress applied in a remote place. Accordingly, the stress

distributions are given by

2 2 2 4
_ 1o 13 @Zg{l_A_2+(1_4A L34 )cos29} (4.44a)
r

Y ) R
>0 & P- A%y
o, = P =§[%{r2—2/12 lnr—%cos%’}] (4.44b)
2 4
w:_ﬁ(laﬁjzz 1247 34 ) Gnoe (4.440)
or\r 06 2 7 7

where A is the radius of the hole.

4.4.3 STRESS DISTRIBUTION ACTING ON A STRAIGHT BOUNDARY OF A SEMI-
INFINITE PLATE SUBJECTED TO A NORMAL LINE FORCE (P)

P

Figure 4.10 A semi-infinite plate subjected to a normal line force (P).

The Airy stress function @ for the stress distribution due to a concentrated normal force

(P) acting on a straight boundary of a semi-infinite plate (see Figure 4.10) is given by

®=Ar0sin (4.45a)



so that

1od 1 0°® cosf
T ror r*o06* r 40
2 2 :
o, = 0 g) _ 0 (Aré’zsmé’) ~0 (4.45¢)
or or
. }g(@gsz (4.45d)
or\ r 06

where A is a constant. The radial stress (o) appears to be a principal stress in the absence
of shear stress (7,, = 0). The constant 4 is determined according to the equilibrium of forces

acting on any cylindrical surfaces of radius » so that

2P cosf
o = _2Pcost (4.46a)

,
T r

A locus for a constant radial principle stress (o) for a given load () may be found by
eliminating 6, given that d cos@ =r in the circle with a diameter (4) shown in Figure 4.10,
which is given by

2P

= 4.46b
0, == (4.46b)
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In other words, the principle stress direction constantly varies along the circle although the

P
> o

9=0

radial stress (o) is constant.

AN
o= -2P/md

d: circle diameter

g

Figure 4.11 A locus of radial stress (o) for a given load (P).

4.4.4 STRESS DISTRIBUTION IN A CIRCULAR DISK

In order to obtain the stress distribution for a finite circular disk subjected to a force (), the

stress distribution in the semi-infinite plate may be used. If two equal tensile radial stresses
2P . . . I

(o, = =) with another force P are added on the circle circumference in Figure 4.11, then,
7id

the radial compressive stresses are offset and, as a result, no stress exists on the circumferential

surface and the circle is equivalent to a finite disk as shown in Figure 4.12. Therefore, the

stress distribution within the disk can be calculated by superimposing the two equal tensile

radial stresses on the previous stress distribution in the circle.
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o,=2P/md

0,=2P/nd

d: Disk diameter

EaS

Figure 4.12 A circle is isolated from the semi-infinite
plate subjected to the force P and then two equal
tensile radial stresses (o, = 2P / nd) with another force
P are added on the circle circumference to offset the
compressive stresses. As a result, no stress exists on
the circumferential surface and the circle is equivalent
to a finite disk.

At point M’ (for solid arrow)
Oy
IF,=0
% Ox 0,= 0,sinBsind = g,sin’0
f o SF=0
" 0,= 0,c080c0s0 = 0,c0s°0
At point M’ (for dashed arrow)
Oy
~ SF,=0
X % or ﬁ}d 7, = 6,c080c0s0 = 7,c0s%0
o SF,=0

0,=0,sin0sind = o,sin’0

At point M’ (for both arrows)
d: Disk diameter

SF,=0
0,=0,(sin*0+ cos*0)= o,

XF=0
0,= 0,(sin’0+ cos’0)= o,

Figure 4.13 The stress distribution caused by the tensile stresses added along the circumference is uniform
within the disk i.e. 0,=0,=0, without force P.
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2P

Tensile
¢, =2P/md

(a) (b) (c)

Figure 4.14 A finite disk with a diameter of d subjected to line force P.
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Before we obtain the stress distribution for a finite circular disk, we need to know that the two
equal tensile radial stresses (o, = 2P/ zd ) added along the circumference causes a uniform stress
distribution where o, = o, = 2P/ md within the disk as shown in Figure 4.13. Accordingly,
we use the superposition as shown in Figure 4.14 to find the stress distribution on the
horizontal diametral section of the circular disk subjected to a force P [Figure 4.14(a)]. The
stress in the y-direction (gy) on the horizontal diametral section where the stress directions
are symmetric [Figure 4.14(c)] is given by
4P cos’ 6

2
o,=20,c08 0=——
T r

(4.47a)

and the stress in the y-direction (0,) due to the two equal tensile radial stresses at any point

in Figure 4.13(b) is given by

2P
o, =—. 4.47b
T d ( )
Superimposing these together,
3
o __4Pcos 6’+2P (4.470)

7 T r d

The maximum compressive stress (= minor principal stress) along the horizontal diameter

occurs at the center of the disk (0=0) and is found to be

_ 6P

(o2 =——.
ymax 7d

(4.47d)

Similarly, the stress in the x-direction along the horizontal diameter (o,) is given by

o = (3PSO g % (4.47¢)

v r

and the stress at the center of the disk (= major principal stress) is found to be

2P
Ovmax = o (4.47f)
It follows that
0,—0,=0,-0,= %, (4.47g)

which may be useful for the photo-elasticity calibration.



5 LINEAR ELASTIC STRESS FIELD IN
CRACKED BODIES

Most engineering materials contain small cracks or defects produced during service or
manufacturing. When an engineering component is fractured, new surfaces are created. They are
caused by the rupture of atomic bonds due to high local stresses. The phenomenon of fracture
may be approached at different scales. As the crack size decreases, smaller scale analyses would
be required. At a small scale for some cases, the phenomena of interest may be considered
within distances of the order of 107 cm so that the problem is studied using the concepts of
uncertainty. However, as the crack size increases, the material behaviour based on continuum
mechanics may be more appropriate. The complex nature of cracking behaviour prohibits a
unified approach of the problem, and the existing theories deal with the subject from either
the microscopic or the macroscopic point of view. In this chapter, the linear elastic stress

analysis for cracked bodies will be introduced as part of the continuum mechanics.

]

[

Mode I Mode II Mode II1

Figure 5.1 The three modes of cracking.

When we consider a two-dimensional crack extending through the thickness of a flat plate,
three different cracking modes need to be defined by the loading position and direction.
These three basic modes are illustrated in Figure 5.1, which presents three types of relative
displacements of the crack upper and lower surfaces. Mode I, mode II and mode III are
also called opening mode, shearing mode and tearing mode respectively. Some practical loading

examples of testing for such modes are given in Figure 5.2.
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Figure 5.2 Practical loading examples of testing for different modes: (a) mode I, (b) mode |,
(c) mode |, (d) mode I, (e) mode Il [after Kim and Ma, 1998]%, (f)' mode Il, and (g) mode lIl.

5.1 COMPLEX STRESS FUNCTION

The stress field around a crack tip can be found mathematically using the equations with

the Airy’s stress function (@) as discussed previously:

)
o, = - +Q (bis 4.18)
2
o, = Z qz) +Q (bis 4.19)
. X
~ 0D

T = . is 4.2
o oxdy (bis 4.20)
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The complex function is defined as
Z(z)=ReZ+ilmZ (5.1)
where z =x + iy.

The Cauchy-Riemann conditions for the complex function are given by

dZ OReZ 0ImZ
Re— = = (5.2)
dz Oox Oy
Imd_Z:aImZ:_aReZ or Imd_ZzalmZ:_aReZ . (5.3)
dz ox dz ox oy
The Airy’s stress function’ is given by
®=ReZ+ylmZ (5.4)
where == =7 | d_Z=Z and — =Z7'
dz z z
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Therefore, the stresses are found:

o .=ReZ—-ylmZ' (5.5)
o,=ReZ+yReZ' (5.6)
r,=-yReZ'. (5.7)
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Figure 5.3 Crack in an infinite plate: (a) mode | and Il; and (b) mode IlI.



5.2 THE STRESS AROUND A CRACK TIP

Let us consider mode I crack problem when 4 =1 in Figure 5.3 with a crack length of 2
a in an infinite plane under biaxial stresses. The boundary conditions of the problem at

infinity and on the crack surface may be stated as:
ox=o0y,=0 and 7,=0 for |z|:|x+iy|: xP+y’ >
and along the crack face co,=0 and 7, =0 for y=0,-a<x<a.

The stress function for symmetric crack problems satisfying the boundary conditions is

Z="1= . (5.8)

2 2
z —a

The equation is analytic except for -a<x<a at y = 0.

To move the origin of the coordinate system to the crack tip (z = ) from the middle of

the crack, z is replaced by z + a:

2 3
A E O B
Jzi—a? A2az 220 24\24) 246\ 24

For small |z

b

K
ZI = L_ where KI =o\7a . (5.10)

ey

Using the polar coordinates with z = r(cos@ +i sinf)=re”

, the stresses near the crack tip are

obtained for mode I:

o, = K, cosg(l—sing sinﬁJ ~(1-k)o (5.11a)
N2 2 2 2

o, = K, cosg(l+singsin£] (5.11b)
2 2 2

V2mr

K, 6 .6 30
cos—mnzcos? (5.11¢)

T =

Y 2w
O'Z:v(ax +0'y) for plain strain (5.11d)
where KI = o+ na -

The last term (1-k)o in the equation for o is obtained separately for k#1 by the

superposition principle.



Also, the vertical displacement (v) along the crack:

—?O-( — )\/az —x° for plane strain
ro (5.12)
:Fw/ — for plane stress
The stresses around the crack tip for Mode II are given by:
-K, . 0 6 30
O, =—=sIn—| 2+c0s—cos— 13
N P { 5 > (5.13a)
K, .60 6 3
 =——_sin—cos—cos— 1
Ny 2% G.13b)
T, z% cosg[l—singsin?} (5.13¢)
mr
0'Z=v(o-x+o-y) for plain strain (5.13d)

where K, = rma .
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The stresses around the crack tip for Mode III are given by:
T, K, |sin6/2
T, 27 | cos )2 (5.14)
c,=0,=7, =0

where K, = v/ .

The stress intensity factors (K,;, K, and K ;) given above are for an infinity body. Obviously,
the finite size of the cracked body is expected to have an influence upon crack tip stress field.
Accordingly, the expressions for the stress intensity factor have to be modified to account

for this effect. A more general expression for the stress intensity factor may take the form:

K =Yovm (5.15)

where Y is a factor which accounts for geometric effect and ¥ =1 for an infinite plate.
Some authors do not incorporate V7 in the expression. Mode I is the usual one for fracture

toughness tests and a critical value of stress intensity factor (K, ) determined for this mode

would be K, = Yo, Jm.

5.3 STRESS INTENSITY FACTOR DETERMINATION

The stress intensity factors may be determined for various loading cases using the stress

intensity factor for a case given in Figure 5.4 with the superposition principle.

Figure 5.4 Crack subjected to a point forces P.



Figure 5.4 shows a plate containing a crack subjected to point forces (£) at crack surfaces,
which may resemble a practical case where a crack originates at a bolt or rivet hole under

loading. The stress function satistying the boundary conditions is given by

P 2oy
Z= — (5.16)
mw(z=b)\ z" —a
and, accordingly, the stress intensity factors for A and B sides are found® to be
P a+b
K= |— .1
"B \ab o172
and
P |a-b
K. = a 5.17b
" g \atb OA70)

where B is the thickness, and (K, and K ) denote the stress intensity factors for 4 and B

sides respectively. When & = 0 for a centrally located point force (), the equations reduce to

P

B

Equation (5.18) descirbes that the stress intensity factor decreases for increasing crack size

K, =K, = (5.18)

at a constant P. It is therefore possible that a crack can be arrested after some growth when

its stress intensity factor falls below a critical value (K, ).

The superposition principle can be used to calculate the stress intensity factor if the same
stress field equations are applicable for mode I cases or mode II cases or mode III cases.
However, it is not permitted for a combination of different fracture modes because of
different stress fields.

As an example for the calculation of a stress intensity factor, let us consider the case of a
crack with an internal pressure. Figure 5.5(a) shows a plate without a crack under uni-axial
tension and hence the stress intensity factor K, =0. The stress distribution in Figure 5.5(a)
may be equivalent to a case given in Figure 5.5(b) where a crack with a length of 2a is

made at the centre of the plate and an external stresses (o) are applied to the crack edges.
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Figure 5.5 lllustration of superposition principle.

Case (b) in Figure 5.5 is a case where a plate given in Case (c) with a central crack under
uni-axial tensile stress (o) is superimposed with a plate given in Case (d) with a crack having
uniformly distributed stress (o) along its edges. Accordingly, the stress intensity factor for
Case (c) is found

K, +K, =K, =0 or K, =K, = o~ m (5.19)

A case where a crack is subjected to an internal pressure p is equivalent to the case in
Figure 5.5(d) except the pressure acting in an opposite direction to o. If the sign of K in
Equation (5.19) is reversed, the stress intensity factor for a crack with internal pressure is

found to be

K,=pJma. (5.20)



MECHANICS OF SOLIDS AND FRACTURE LINEAR ELASTIC STRESS FIELD IN CRACKED BODIES

Further examples for the determination of stress intensity factor will follow. For cracks
emanating from a loaded rivet hole (Figure 5.6), it can now be derived using the superposition
principle. The hole is assumed to be small with respect to the crack. The case given in
Figure 5.6(a) is broken up into components (b), (d) and (e). The components (b) and
(d) can be obtained first with satisfied equilibrium conditions, and then component (e)
is found to take away the stress (0) and force (P) used for the equilibrium in (b) and (d)
respectively. Accordingly, the stress intensity factor (K,,) is given by:

KI

a

=K, +K K, (5.21)
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Figure 5.6 Cracks emanating from loaded rivet hole and superposition.

and, given that K, =K, :

oW
2Jma

The internal pressure (p) [Equation (5.20)] is equivalent to a series of evenly distributed

1 1
K= (K, +K,)=Sovma + (5.22)

point forces. This allows us to use Equation (5.17) for determining stress intensity factors

by integration for various cases. For example, Equation (5.19) can be found by integration:

K,= P J.a{ /a+x+ /a_x}dx
ma 7° a—x \ a+x
ar dx

=2p.|Z

p\/;r[) ,aZ_XZ

=—|:2p\/ECOS_1 f} =p\/5. (5.23)
T al,

Thus, the two methods validate each other.




5.4 STRESS INTENSITY FACTOR WITH CRAZING

Crazing is a phenomenon which occurs in polymers when crack-like discontinuities are
formed, in which fibrils connect the two faces of the crack. The restraining of the faces
may be described by a uniform stress —o, over the crack faces [Figure 5.7 (a)] and from

Equation (5.19) we have:

K/ =—o Nm (5.24)

where 2q is the length of the craze and K7 is the stress intensity factor due to the crazing.

The applied stress o at infinity also gives rise to a stress intensity factor (K7),

K'=omma (5.25)
so that the net stress intensity factor (K;) is given by

K,=K"+K'=(c—-0, Wm . (5.26)

This is illustrated in Figure 5.7 using the superposition principle.

Iy Ty

T T
(a) (b) (©

Figure 5.7 Superposition with crazing: (a) fully crazed to resist applied stress;

(b) o_represents resisting stress by crazing; and (c) a crack subjected to stress, o.
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Figure 5.8 Craze development and superposition of stress intensity factors for crazing: (a) fully crazed to
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Figure 5.9 Stresses in a craze.

As the applied stress (o) increases, the crack length increases and becomes partially crazed

as illustrated in Figure 5.8. The stress intensity factor due to the craze [Figure 5.8(c)] may
be derived:

K'=2‘/6TT —0.dx (5.27)
1 N ! 2 .
i.e.
K = —#o—c cos‘l(ﬂ) ) (5.28)
T a

The stress intensity factor (K;) due to the applied stress (0) is the same as before and
hence the net value of the stress intensity factor (K;) for the case given in Figure 5.8(b)
or Figure 5.9 is given by:

2
1= % cos™ ﬁ} . (5.29)

K,=K]+K; :0\/7m|:
T o a

To calculate the craze zone size (rp) or a plastic zone size in the case of metals using the
model given in Figure 5.9, we need to find a condition for it. It can be supposed that
the crazes grow as the load increases but cease to grow at a stage where no further craze
stress increases i.e. the craze stress and length remain constant at g,. Therefore, the critical
condition is found to be K,=0. Accordingly, setting Equation (5.29) to zero leads to

a4

i=£cos (5.30)
oc. T a



If we consider small values of stress, i.e. 0 << 0, and r, =(a—a,) << a for approximation,

we find,

| _ 03 0 Nl_l;rzo-z 5.31)
a 20, 2 40 '
Therefore, the craze size (r,) becomes
2 2
ona
= 8o 2 (5.32)
If we let K, = o+/7a, then,
K 2
T By
r=—|—*L1. 5.33
-2 &) 5.3

c

o/,

DD T T T T T T T T

iy

Figure 5.10 Comparison between true and approximated approaches.

The relationship between applied stress and craze length at the critical condition is shown
in Figure 5.10 for both approximated and true values. There is very rapid change in a for
o greater than about 0.8 _. Dugdale’” conducted an experiment and found that there is a

good agreement between experimental data and theory for a steel.
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Figure 5.11 (a) A surface crack subject to uniaxial tension and (b)? the associated elastic

magnification factors on stress intensity.
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5.5 SEMI-ELLIPTICAL CRACK

The semi-elliptical crack resembles a surface crack occurring in practice (Figure 5.11).
A three-dimensional geometry is useful involving crack depth (@), crack length (2¢) and
thickness of plate (B) to model a semi-elliptical part-through crack. An empirical stress

intensity factor’ subjected to a remote stress (o) is given by

Kol /o) 530

where M., is called an elastic magnification factor on stress intensity, and Q is an elastic
shape factor for an elliptical crack. M. and Q are functions of 4/B and a/c; plots of the
factor M, / JO are given in Figure 5.11(b). It is found that long, shallow cracks have high

M, / JO values increasing with 2/B whereas short, deep cracks have essentially constant low

M,/JO values. Equation (5.34) may be useful in the design of pressure vessels.

5.6 ’'LEAK-BEFORE-BURST' CRITERION

The safety may be one of the most important factors for consideration in the pressure
vessel design. There are two different possibilities in pressure vessel failure process. When
the fracture toughness of a material chosen is sufficiently high and the growing surface
crack reaches the other external surface, the pressure vessel starts to leak before it bursts
(Figure 5.12 (a)). However, if the fracture toughness is low and the growing crack reaches

its critical value (Kic) before it leaks, the pressure vessel would burst.

We may consider crack geometry and fracture toughness for ‘leak before burst’ design. One

of the conditions to be satisfied for design is
a>B

as given in Figure 5.12 (b). Another condition is that fracture toughness should be
sufficiently high. We can find a ‘leak before burst’ criterion from Equation (5.34) satisfying

the conditions:

K, >omB(M,/J0). (5.35)



Note that the crack depth (a) is replaced with the thickness (B).

Préssure ’ ' a=B

(a) (b)

Figure 5.12 Cross section of pressure vessel: (a) different stages of semi-elliptical

crack growth; and (b) assumed crack geometry for ‘leak before burst'.

5.7 RELATION BETWEEN ENERGY RELEASE RATE G AND K,

Consider an infinite plate (for plane stress) with fixed ends containing a crack size a as shown
in Figure 5.13.Two different stages are shown — before and after crack length increment
over a distance Aa. If we want to close the crack over an infinitesimal distance Aa, the

strain energy for the closure (AA) is calculated as:
gy

oV BK?
Zydrz

Aa
AN =2B —L Aa .36
{ E (5.36)

where B is the thickness. When the crack length (a) increases, the strain energy (AA) will
be released and its release rate, G; (strain energy release rate), is defined as,

_AA
BAa

(5.37)

1
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o (applied stress)

Y

2
T V= Faxlaz — x” (plane stress)
~ I
o, = K, cosg(l + sing sinﬁ)

" 2w
<—ﬂ—>}

Figure 5.13 Before and after crack length increment over a distance (Aa).
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Combining Equations (5.36) and (5.37) yields:
K2
G, = —L (plane stress) (5.38)
E
and
2

G, = K_E’ (1-v?) (plane strain). (5.39)

5.8 FRACTURE CRITERIA FOR MIXED MODE LOADING

In mechanics of solids, various criteria are used for yielding, failure, and fracture. The
fracture criteria to be introduced here are those involving the stress intensity factor for

mode I and mode II.

Kie = Kre

Kire

Circle

/ K + K2 = K%

Kire

Ku Ellipse
T (Ki/Kie)? +(Ki/Kiie) = 1
KIC
_> KI

Figure 5.14 Fracture criterion based on the energy balance for combined loading.

The stress fields under mode I and mode II loading can be characterised by stress intensity
factors K,=ovm and K, =7~ 7ma respectively. When the stress intensity factors increase
under mixed mode loading, fracture must be assumed to occur when a certain combination

of the two stress intensity factors reaches a critical value.
One of the fracture criteria is based on an energy balance principle. According to the energy

conservation, the total energy release rate (G,) is the sum of individual contributions for

I — II mixed mode loading and assumed to be a constant:

Gt:Gl +G11 = constant (5.40)



where G, :(1—v2 )[(12 /E (for plane stress), G, :ﬁ (for plane stress), G, :(1 —vz)Kf, /E (for plane
E

2
strain) and G, K, Alternatively, the fracture condition would be:
E

K12+K12[ = constant. (5.41)

According to Equation (5.41), when K; = 0 for mode I cracking, KIZ: K,ZC= constant, and,
when g, =0 for mode II cracking, K; =K . Consequently,

K +K,; =K, =K

llc -

(5.42)

This is depicted in Figure 5.14. However, Equation (5.42) is problematic if Kic # Kue. In
practice, unfortunately Ky # K. is the case, indicating the energy consumption for creating
fracture surfaces under mode I loading is different from that under mode II loading. Also, it
is usually observed that crack extension under mode II loading takes place at an angle with
respect to the original crack direction. The fracture condition is then empirically modified

to satisfy the condition Ky #Kje:

2 2
[&] +£K,1j . (5.43)
K]L‘ K[]c

As shown in Figure 5.14, it is elliptical.

y

Crac

Figure 5.15 Stress components in the polar coordinate system.



MECHANICS OF SOLIDS AND FRACTURE LINEAR ELASTIC STRESS FIELD IN CRACKED BODIES

Another criterion proposed by Erdogan and Sih'’is based on the postulation that crack
growth occurs in a direction perpendicular to the maximum principal stress to derive the

fracture condition under mixed loading.

It is convenient to use the polar coordinate system for analysis (Figure 5.15). The stresses

in the polar coordinate system are given by

K, 0 ., 0 K, .0 ., 0
o= cos—(1+sin”—)+——sin—(1 —3sin” — 5.44
P = oSS ) sin ) G44a)
K, .60 K, ..60 ,0
o, = cos” — — 3sin—cos” —
NGy 2 2w 2
1 o , 0 3 .
= cos | K Y 2k, sind .
) cosz[ reos’ o~ K, sin } (5.44b)
K
T, =—1sin20052g+ 2 cos§(1—3sin2 g)

Vw22 o . (5.440)

=m cosg [K,sind+K , (3 cos@—l)]

Note that the stress fields around the crack tip are obtained by superimposing the stress
fields from mode I and mode II.
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The cracking angle (6 ) with respect to the x-direction can be found if the major principal

stress direction is known. The stress 0, will be the principal stress (o) if 7,,=0 as we readily

find that a mode I crack extends along 0 = 0. Accordingly, setting Equation (5.44b) to zero:

K,smf +K, (3c0s6’m —1)=0.

(5.45)

Equation (5.45) can be rewritten using cos’ 0—’”+ sin® 07’” =1 and cos@, =1-2sin’ %" as

2K, sin&cos&+31{” cos’ &—sinzﬁ - K| sin® 0—'”+cosze—’” =0
2 2 2 2 2 2

which yields a quadratic equation
0 0
2K, tan®> —~ — K, tan—=—K, =0.
2 2
Solving this equation, the cracking angle (¢ ) is found to be

2
0 K K
(tan—'”j 151 (—’] +8
2 1,2 4K, 4|\ K,

or

Ki/Ki

A

Pure mode I

40

+1 l
fn(degrees)

+o

-20

(5.46)

(5.47)

(5.48a)

(5.48b)

Figure 5.16 Sign convention and theoretical crack extension angle according to Equation (5.48b)



Accordingly, the principal stress (o) is also found as

K, cos’ O _ £3sin9—’” cos’ O . (5.49)

N2 2 2w 2 2

A sign convention and theoretical crack extension angle as a function of Ki/K; according
to Equation (5.48b) are given in Figure 5.16. According to the sign convention, the crack

0,=0, (Hzem ):

propagation angle under mode II loading is negative.

0.5
0.4
0.3 1

0.2 1

K“{M Pa m“'5}

0.1

0 0.2 0.4 06
Ki(MPa m?®5)
Figure 5.17 Comparison between theory [Equation (5.51)]

and experimental data for PMMA.

To find the fracture condition under mixed loading, we postulate that the crack extension
takes place if o, under mixed loading has the same value as o, at fracture under mode I

loading. The principal stress for pure mode I at fracture is given by

K[c

= =0
g, (2m) ( ) (5.50)
from
c,= \/12%7 cosg(H singsin?). (bis 5.11b)
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The fracture condition under mixed loading, then, is found by equating Equations (5.49)

and (5.50):
6 0 6
K=K, cos’ —2-3K , sin—"cos” —*. 5.51
Ic 1 2 /i 2 2 ( )
A comparison between theory [Equation (5.51)] and experimental data for PMMA is

shown in Figure 5.17. The theoretical prediction appears to be conservative compared to

experimental data.
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Figure 5.18 (a) An infinite plate subjected to remote stresses ¢ and co

biaxially. (b) Applied stresses at a different angle to find separate mode

| and mode Il. (c) Stress components in equilibrium.

Let us consider an infinite plate containing a crack of length 24 at an angle (/) to the y
direction as shown in Figure 5.18(a). It is subjected to stresses o and co in the y- and
x- directions respectively at infinity. We need to find stresses for mode I and mode II to use
the fracture criterion under mixed mode loading. To this end, we need to find the stress
components defined in Figure 5.18(b) in relation with those in Figure 5.18(a) using the
equilibrium condition as shown in Figure 5.18(c). Consequently, the stress intensity factors

for this case are obtained as

K, =(1/2)[c+1+(c—1)cos2 BloN (5.52)
and

Ky =—CT_1sinzﬁa\% (5.53)

for mode I and mode II respectively.



Example) A thin walled cylindrical pressure vessel with a large radius of R and a wall thickness
of B contains a through-the-thickness crack oriented at an angle B with the circumferential
direction as shown in Figure 5.19. Determine the stress intensity factors of the crack when

the vessel is subjected to an internal pressure, p. Assume the geometry factor is 1.

R
Solution) The hoop o1 and longitudinal o1 stresses for the cylindrical vessel are o, =£=

2B
R
and o, =% respectively. The ratio ¢=1/2 in Equations (5.52) and (5.53). Thus, the stress

intensity factors due to hoop and longitudinal stresses are given by

K, =0.50.511+(0.5 —l)cos2ﬂ]p—BR Jra =0.5[l+sin’ ,B]p?fe\/E (5.54a)
and
K== 22 sin2p) DS = 0.5(sin2p) 2 ma (5.54b)

The stress intensity factors due to pressures over the cracked surfaces are K, = p+/7a and

K, =0. Therefore, the total stress intensity factors by superposition are

K, = pli(1+sin2 ,B)%+1}/E and K, = (sinzﬁ)%\/% . (5.540)

~
Ly ~~
2a o + /™
\p
\
~

Figure 5.19 A cylindrical pressure vessel with an inclined ‘through the thickness’ crack and

superposition.
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6 PLASTIC DEFORMATION AROUND
A CRACK TIP

6.1 ONE-DIMENSIONAL PLASTIC ZONE SIZE ESTIMATION

The elastic stress field around the crack tip is very high so that a cracked body is usually
accompanied by plastic deformation and non-linear effects. There are, however, cases where
the extent of plastic deformation and the non-linear effects are very small compared to the
crack size. In such cases, the linear elastic theory is still validly used to address the problem
of stress distribution in the cracked body. The elastic stress field solutions discussed in the
previous chapter show a stress singularity exists at the tip of a crack i.e. the stress approaches
infinity. However, the stress in the vicinity of a crack tip, in reality, is limited to a yield
stress when subjected to loading, and deform plastically. A simplistic estimate of the size
of the plastic zone can be made, whether in plane strain or in plane stress. Let us consider
first a plane stress case for a one-dimensional horizontal extent of plastic zone, which occurs

on the surface of a plate.

[ ]
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Figure 6.1 One-dimensional plastic zone with stress distribution

of oy and yield stress (Oys).

The stress distribution of o, on a plate with a yield stress of oj; for 6 = 0 when subjected

to an applied stress (o) is shown in Figure 6.1 according to Equation (5.11b),

o, = \/% cosg[H singsin?j. (bis 5.11b)

One can realise that the stress (0,,) cannot increases in a real material beyond the yield

stress (0ys). Accordingly, the corresponding distance from the crack tip () to the yield stress
(635) may be used as a simplistic estimate for the plastic zone size. Substituting 6 =0, o, =0
and 7 =7, into Equation (5.11b), we find

K; o’a

po=—l=— (6.1a)
" 2ro,, 20,




Figure 6.2 Modified one-dimensional plastic zone size

In this calculation, though, the hatched area in Figure 6.1 is ignored. If we compensate
for the loss of the hatched area, the actual plastic zone size must be larger than r, [see
Equation (6.1a)]. Such shortcomings may be reduced if the material immediately ahead of
the plastic zone (r,) is allowed to carry some more stress by introducing an effective crack
size (agr)'' which is longer than the physical crack length (a). To this end, the crack tip
position can be shifted for calculation. Then, the effective crack size becomes aey=a+5 where
0 is the length contributed by the hatched area as shown in Figure 6.2. Accordingly, the
plastic zone is calculated by adding A and 6 together. The distance A is found by replacing

a with a+6 in calculation using Equation (5.11b):

Jr(a+s
o, = \/% (when 6 =0)— o, =% (6.1b)
or
o~ oVa (6.1¢)

s

9]
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for 6<<a. Therefore, for small plastic deformation,

o’a
1= = =r,. (6.1d)
s

The distance S is obtained by equating area A to area B in Figure 6.2:

A A A
K o\ 7,
odr—-loc.. = L_dr—lo. =|——dr—Ac (6.1¢)
'([ g » '([ N2mr » '[[ N2mr »

o(a+6) ¢t 1
T.([—dr—ﬁays =00

»
\r
so that, for 6<<a,

c’a K?
%20t et (619
s s

Accordingly, it is found that

o=r, (6.2)
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and that the modified plastic zone size (r;) is given by
r; =ﬂ+5=2rp. (6.3)

The size of the plastic zone (r;) calculated according to the second model (Figure 6.2)

appears twice as large as the one calculated according to the first model (Figure 6.1).

6.2 TWO DIMENSIONAL SHAPE OF PLASTIC ZONE

The two dimensional shape can be obtained by examining the yield condition around the
crack tip. Either the Tresca criterion or the Von Mises criterion may be adopted. The Von

Mises yield criterion, in terms of the principal stresses, is given by
2 _ 2 2 2 .
20, = (0,~0, ) +(o,~0,) +(o;—0,) (bis 2.28)
where oy in the uniaxial yield stress.

The crack tip stress field equations in terms of principal stresses can be found by substituting

the following equations [for the case where k=1],

K, 6(, .6.30 .
= cos—| l-sin—sin— [— (1 -k (bis 5.11a)
O hm 2( 2 2} (=Ko
o, = K, COSQ(H_ singsinﬁj (bis 5.11b)
N2 2 2 2
T, = K, cosgsingcosﬁ (bis 5.11c)
T N2 2 2 2

_——

o.=vlo, +O'y) for plain strain (bis 5.11d)

into Equation (6.4) for two dimensional principal stresses (o1 and ©2),

1/2
_o.to, |(o.-0o, ’ 5
o, or o, = ;o * 3 +7,, (6.4)
yielding,
alz% cos%(Hsin%} (6.5a)
0'2:\/% cosg(l—singj (6.5b)

o,=v(o,+0o, ):2\/\/% cosg (plane strain) (6.5¢)



MECHANICS OF SOLIDS AND FRACTURE PLASTIC DEFORMATION AROUND A CRACK TIP

or
0,=0 (plane stress). (6.5d)

The two-dimensional plastic zone (7) as a function of 6 can be obtained by substituting

Equation (6.5) into distortion energy criterion (or Von Mises criterion) Equation (2.28):

2

r, :—4K’ 5 [;sin2 O+(1-2v)’ (1+cos0)] for plane strain (6.6)
7o,
and
K 2
7, =4ﬂ; 5 [1+%sin2 ¢9+COSI9] for plane stress. 6.7)

s

Substituting 0 = 0 in Equation (6.7) for plane stress, we recover the one-dimensional estimate:

K,
r o= ) bis 6.1a
" 2ro, ( )
1 1
Plane stress
R,/(Ki/n0)’ g
Plane stress
. Plane strain
Plane strain
(a) (b)

Figure 6.3 Plastic zone shapes calculated according to Von Mises and Tresca yield

criteria: (a) Von Mises criterion ; (b) Tresca criterion.
The two-dimensional shape can be shown by plotting Equations (6.6) and (6.7) as shown

non-dimensionally in Figure 6.3(a). It is seen that the plastic zone in plane strain is smaller

than that in plane stress.
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Similarly, the Tresca yield (or maximum shear stress) criterion may be employed for the two-
dimensional plastic zone. As already discussed, the Tresca yield criterion assumes that yielding

— 1 . .
01705 or Tmax:§ (0, —0,)> whichever is the

occurs when the maximum shear stress =
largest, reaches its yielding point. In the case of uni-axial loading, the maximum principle
stress (0) reaches its yielding point (o) so that ) =0, 0, =0; =0. Accordingly, the

maximum shear stress is given by

Tmax = O-l _63 = O-l _O = o-ys . (biS 1.6)
2 2 2
By substituting Equation (6.5) into the maximum shear stress (7, ) or the maximum shear

stress criterion (or Tresca yield criterion), we obtain

2 2
r = K, oS 9 (1 +sin Q) for plane stress (6.8)
" 270l 2 2

and the larger of

K ? K
r,=—1=cos’ —{1—2v+sin5} and r,=—<—sin’@ for plane strain. (6.9)

s
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The two-dimensional shape then can be shown by plotting Equations (6.8) and (6.9) as
shown non-dimensionally in Figure 6.3(b). The difference is seen between Von Mises and
Tresca plastic zone shapes and sizes. The Tresca plastic zone size appears slightly larger than

Von Mises plastic zone size.

Similar calculations are made for modes II and III and plastic zone shapes based on the

Von Mises yield criterion are shown in Figure 6.4.

r, (K, /7[0'yx)2

Plane
stress

Plane
strain

Crack Crack

Mode 11

Figure 6.4 Plastic zone shapes based on Von Mises for modes Il and Ill.

Figure 6.5 shows a plastic deformation zone obtained experimentally on a steel using an
etching technique. We can find some similarities in plastic zone profile. The etching response
is sensitive to grain orientations. Nonetheless, it offers a good guide for understanding the
simple theoretical calculations. It is noted that the plastic zone size has been shown to be
proportional to K] / o7, regardless of the different calculation methods, which may be a

basis for developing a valid practical testing method of fracture toughness.

%

Figure 6.5 Plastic zone around a crack tip, bound-
aries of which were traced out from an experi-
mental plastic deformation image obtained by an
etching technique. [Hahn et al, 1971]"2
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6.3 THREE DIMENSIONAL SHAPE OF PLASTIC ZONE

The three dimensional plastic zone around a crack tip may be theoretically estimated when
the plane strain condition exists for a thick plate. The plane stress condition is, also, applicable
depending on how far the location of interest is away from the plate surface. The plane stress
exists at the surface of the plate if the surface is free from stresses (o, =0, =0). In contrast,
plane strain prevails in the interior of the plate because the stress o3 gradually increases from zero
at the surface towards the middle of the plate. The three dimensional plastic zone is illustrated

schematically in Figure 6.6 using the previous calculations based on the Von Mises yield criterion.

Figure 6.6 Three-dimensional plastic zone

shape based on the Von-Mises yield criterion.

Thickness

5\ -— —=
—_— =—  Free yielding
-—

[Constrained yieldin

L

Figure 6.7 Yielding at different
states of stress.



Figure 6.7 shows a cross section schematically of the three dimensional plastic zone shown
in Figure 6.6. The plastic deformation at the surface takes place more freely than that in
the interior because of plane stress condition. Concurrently, the plastic deformation in the
interior is much more constrained than that at the surface because of plane strain condition
(& = 0). Therefore, more hydrostatic component than deviatoric stress component prevails
internally, resulting in the smaller plastic zone and more brittleness. Such different stress
conditions may be shown using the Mohr’s circles and stress elements under mode I loading

in Figure 6.8. For O = 0, the stresses 0, o, and o, near the crack tip correspond to

s
the principal stresses o1, 0> and o3 respectively according to Equation (6.5). In the case of
plane stress, the maximum shear stress (7,,,,) occurs at planes inclined at angles of 45° to
the directions of o2, and o3 as shown on the stress element in the figure. In the case of
plane strain, o/ and o> have the same magnitude as that in plane stress but o, = V(O'1 +O'2)
is acting in the z-direction. The Mohr’s circles represent such a difference between plane
stress and plane strain for v=0.5. Accordingly, the hydrostatic stress (o,,)
[1 B (o8 +(7y +0, _0,1t0,+0;

=—1= = bis 1.7
O =7 3 3 (bis 1.7)

is not only higher in plane strain than in plane stress but also the maximum shear stresses

(7 ) Occurs at planes inclined at angles of 45° to &, and o2 directions (Figure 6.8).
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Figure 6.8 (a) Planes of maximum shear stresses near the crack tip for 6 = 0; and (b) Mohr's circle

representation for plane stress and plane strain.
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Such maximum shear stress planes manifest themselves in a form of slip bands as depicted
graphically in Figure 6.9. The 45° slip bands appear internally at the cross section
perpendicular to the specimen surface in the case of plane stress while they appear also, in
the case of plane strain, internally on the cross section but parallel with the specimen surface.
In the plane strain case, the 45° slip bands constantly varies as a function of 0 because the
principal stress directions for o7 and oz varies although the principal stress direction for o3
is always in the z direction. Figure 6.10 shows sketches of experimental slip bands with

plastic deformation on the specimen surface in plane stress.

™ Slip

(a) (b)

Figure 6.9 Deformation patterns around the crack tip: (a) 45° shear planes in plane stress;

and (b) hinge type deformation in plane strain in the middle section.
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(a) (b) (©)

Figure 6.10 Experimental plastic zones in plane stress: (a) front surface section, (b) cross section

normal to the front and back sections, and (c) back surface section. [Sketches were provided by

Haleh Allameh Haery.]
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(b)

Figure 6.11 Compact tension specimen after fracture:

(a) depression along the crack; and (b) flat fracture surface

in the middle section and slant fracture along the edges.

Also, the plane stress and plane strain deformations affect the failure mode as shown in
Figure 6.11. The slant regions so called ‘shear lips’ are formed on the specimen surfaces along
the edges and the flat fracture surfaces are created in the middle section [Figure 6.11(b)].
The shear lips coincide with the 45° shear planes indicating that their formation is associated
with the ductile failure mode. However, the flat fracture surfaces do not coincide with the
shear planes but appear to be caused directly by the maximum principal stress involving
the brittle failure mode.
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6.4 PLASTIC CONSTRAINT FACTOR

The yielding behaviour in the vicinity of a crack tip is affected by plane thickness. For
instance, the plane strain plastic zone is significantly smaller than the plane stress plastic
zone. Such a difference is caused by different constraints. A plastic constraint factor (p.c.f.)

may be introduced for quantification defined as

o
p.c.f=——- (6.10)
o

ys

where 0 is the maximum principal stress. To relate o, with other principal stress components, let
o, =no, and 0;=mo,.

From the Von Mises yield criterion,
20, =(0,-0,)" +(0, —0;)* +(0y—0,)’ (bis 2.28)

the following relation is found:

(1=0)" +(n=m)* +(1-m)|o7 =207, 6.11)
Therefore,
1
p.c.f;@:&:(l—n—m+n2+m2—mn)_5. (6.12)
o o

s ys

From the stress field equations,

o= cosg(1+singj bis 6
Ny 5 > (bis 6.5a)
K, 0, .0
— Z| 1=sin— bis 6.5b
o, \/Z_COSZ( smzj (bis 6.5b)

K,

V2mr

o,=v(o,+0, =2 cosg (plane strain) (bis 6.5¢)

or

o,=0 (plane stress) (bis 6.5d)
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we found,
n=(1-sing/2)(1+ sin6)2) (6.13)
and
m=2v/(1+sin@/2) (for plane strain) (6.14a)
m=0 (for plane stress). (6.14b)

Accordingly, we found p.c.f = 1 for plane stress when 0 = 0, and p.c.f. =3 (and =1, m =
2v=0.67) for plane strain when 6 = 0 and v = 1/3. The maximum stress in plane strain

appears as high as three times the uni-axial yield stress.

A comparison of approximate stress distribution between plane stress and plane strain based
on the calculations is shown in Figure 6.12. In the case of plane strain, the stress continues

to rise beyond o until it becomes 35 around the crack tip.
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Figure 6.12 Comparison of approximate stress distribution
between plane stress and plane strain in relation with yield

stress (O ,,): (a) plane stress; and (b) plane strain.

Vs



6.5 THE THICKNESS EFFECT

As discussed, the failure mode (e.g. ductile mode) is affected by plastic deformation and
hence by the thickness of specimen. Therefore, the fracture behaviour is ultimately affected
by the specimen thickness until it reaches a point where the plane stress condition is
negligibly small. The transition from plane stress dominant deformation to plane strain
dominant deformation is graphically illustrated in Figure 6.13. Figure 6.13(a) shows a
thin specimen with plastic zone shape and size according to the Von Mises yield criterion.
As the thickness (B) increases, the proportion of plastic deformation governed by plane
stress is maintained until it reaches a stage where the plastic deformation occurs with plane
stress slip planes as shown in Figure 6.13(b). Eventually, the thickness reaches another stage
[Figure 6.13(c)] where the plastic deformation occurs with slip planes generated by both

plane stress and plane strain.

The maximum depth (r:) of the zone can be shown to be at about 80° and to have a value:

r=2.59(r,), (6.15)
and is given by
r;fl :B(:rit (6.15b)

at the transitional stage [Figure 6.13(b)]. Therefore, the critical thickness (B,;,) is found:

2 2
5 29K ) o4 K 616
27 o, o

s ys
According to the ASTM standard, the minimum specimen thickness requirement for plane

strain fracture toughness test is given by

o

Bz 2.5(&j . (6.17)

A higher stress intensity and a lower yield stress give rise to a larger plastic zone. As a result,

a larger thickness is required for the plane strain fracture toughness test.
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Figure 6.13 Graphical representation of plastic deformation transition from plane stress to
plane strain at the back face of the specimen as the specimen thickness increases: (a) plane
stress; (b) at the transition; and (c) plain strain deformation in addition to that of plane

stress. The plastic zone shape in ‘(a)’ is based on the Von Mises yield criterion.’®

The dependence of Kj- on thickness is illustrated given in Figure 6.14. (The critical stress
intensity for cracking is usually denoted by K., but the notation Ki. will be adopted here
to indicate mode I cracking for both plane stress and plane strain.) The figure shows also
cross sections for shear lips and flat fracture surface regions corresponding to Kic. The curve
suggests that, beyond a certain thickness (Bs), a state of plane strain prevails and toughness
reaches the plane strain toughness value (K.) practically independent of thickness for B> Bs.
It also suggests there is an optimum thickness B, where the toughness reaches its highest
level. In the transitional region between By and Bs, the toughness has intermediate values.
For thicknesses below By, it is possible that there is not much material available for the

plastic flow before the fracture, resulting in low values of Kic as the thickness decreases.
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Figure 6.14 Toughness as a function of thickness and cross sections of specimens with

different thicknesses.
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6.6 THICKNESS OF ADHESIVE LAYER

The adhesion between different components is important for the integrity of engineering
structure made of composites. The thickness of adhesive layer significantly affects the
fracture toughness (G;.) of adhesively jointed section although, for highly brittle adhesives,
this parameter may be not as much significant. Figure 6.15 shows the fracture toughness

as a function of adhesive layer thickness for both toughened and un-toughened epoxies.

GIC (max)9 _____
T ! Toughened epoxy
2 L]
GIC : ©
(kJ/m?) !
1 - |
i Un-toughened epoxy
-O—i-.—.—.—.—._
1 2

am

Adhesive layer thickness (/.)

Figure 6.15 Adhesive fracture energy (G,) as a function of thickness (h) of the adhesive
layer for joints consisting of steel bonded with a rubber-toughened or un-toughened epoxy.
[After Kinloch and Shaw, 1981]"

A relatively complex behaviour with toughened adhesives arises from the plastic deformation
in the vicinity of the crack tip, which is highly constrained with high modulus and high
yield strength substrates such as steel or aluminium alloy. The constraint of adhesive joint
may be higher than that of an adhesive without substrates. It may restrict the full volume
development of the plastic zone in the adhesive layer ahead of the crack tip (Figure 6.16).
Since the toughness is largely derived from the energy required for forming the plastic
zone, the adhesive fracture energy (G;.) steadily increases as the adhesive layer thickness (A1)
increases up to a certain value. The maximum toughness, %™ occurs when the adhesive
layer thickness and the plastic-zone height (r;' ), are similar to each other (Figure 6.15).
Accordingly, the following equation based on plastic zone size calculation [see Equation (6.6)]

would provide a good guidance for the adhesive thickness (han) at Giemay:

E 1
ho~ r}f [z 1 EG, (contro )J (6.18)

2
7 O

where £ is the elastic modulus and ¢ _ is the yield stress. Table 6.1 lists some experimental results.
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?’ FEFFF
Substrate

Crack 7, Bam

Adhesive layet

Figure 6.16 Elastic-plastic model for plastic deformation zone at a crack tip in the

adhesive layer with high yield stress (elastic) substrates.
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Temperature Log Gre G reman Bam ph
(C) (rate of test)

(Control) (Joint) (mm) (mm)

(kJ/m2) (kd/m2)
20 -6.08 2.10 3.90 1.0 0.85
20 -4.78 1.85 3.65 0.8 0.70
20 -3.78 1.55 3.55 0.55 0.49
20 -3.08 1.50 3.15 0.4 0.43
50 -4.66 4.70 2.95 1.1 1.6
37 -4.66 3.75 2.85 0.9 1.16
25 -4.66 2.70 3.85 0.6 0.57
0 -4.66 1.65 3.00 0.5 0.39
-20 -4.66 1.00 3.15 0.25 0.15

Table 6.1 Comparison of measured adhesive layer thickness (/) at maximum adhesive fracture energy (Gy.p)

and calculated plastic zone diameter (r:). [After Kinloch and Shaw, 1981]"7

6.7 EXPERIMENTAL DETERMINATION OF K.

The experimental determination of plane strain fracture toughness (Ki.) is based on the
theories discussed up to now to obtain reproducible values of Ki. under the conditions of
maximum constraint. The plastic zone size in the vicinity of a crack tip must be very small
relative to the specimen dimensions. The procedure for measuring Ki. has been standardised
by the American Society for Testing and Materials (ASTM) to meet the requirements. In
this section, the salient points of the ASTM standard test method will be introduced.

6.7.1 TEST SPECIMEN DIMENSIONS

The dimensions of specimens are specified for the minimum thickness (B) for a valid plane

strain fracture toughness (Ki.) is given by

2
Bzz.s[&} €17 bis

O

and the crack length (a) is given by

a 22.5(](""] . (6.19)

o ys




The ASTM E 399 describes many pre-cracked test specimens such as three-point bend
specimen, compact tension specimen, arc-shaped specimen, and disk-shaped compact specimen.
The three-point bend specimen and compact tension specimen are shown in Figures 6.17

and 6.18. The stress intensity factor expressions" for the standard specimens are:

1

_ (i
‘ ‘<— S=4W£02W ~ ———= -2

Figure 6.17 Three-point bend specimen.
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Figure 6.18 Compact tension specimen.
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1 32 372
W 2(1+2“j(1—“j
w. /4
for three point bend specimen, and
a a a)’ a)’ aY
2+—/0.886+4.64——-1332| —| +14.72| —| 56
P w. w w w. w.
;= Pk 7 (6.21)
-
(-5

for compact tension specimen. The dimensions 2, Wand B are shown in Figures 6.17 and
6.18. The P in equations is a measure of the load, and § is the distance between the points
of support of the beam in Figure 6.17. Equation (6.20) is accurate within +0.25 per cent,
over the entire range of /W (&/W < 1). Equation (6.21) is also accurate within +0.25 per
cent for 0.2 < a/W < 1.
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Fatigue crack

A

N7 Chevron notch

(a) (b)

Figure 6.19 Chevron Notch: (a) Cracked surface with different crack lengths;
and (b) side view. (see Figure 6.11)
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100 |

K. MPa m'?
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p mm!”2

Figure 6.20 Effect of notch radius (p) on the critical stress intensity factor Kjc.
[After Irwin, 1964]%
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6.7.2 PRE-CRACK

The pre-crack of test specimen is made of mechanical and fatigue cracks as shown in Figure 6.19.
The mechanical crack is first machined for a chevron starter notch and then a fatigue crack
follows. There is an advantage of using the chevron notch in that it forces crack initiation
into the centre so that a reasonable symmetric crack front is obtained before testing. If the
initial machined notch front is straight, the subsequent fatigue crack tends to initiate from a
corner. The prepared crack front may be not straight so that an average of three crack lengths
is used. One of the crack lengths is measured in the centre of the crack front, and the other
two lengths are measured in the midway between the centre and the end of the crack front,

a,+a,+a . . . . .
—1 72" 'The reason for using the fatigue crack is that the crack tip radius should

giving g=
be sufficiently small. The effect of the notch radius (p) on the stress intensity factor (K.) is
shown in Figure 6.20. The stress intensity factor (K;.) decreases with decreasing notch radius
(p) until a transitional point is reached, and then a plateau value is found. The fatigue
loading should satisfy some requirements to achieve such a small radius of crack tip and
consistent results. The maximum stress intensity factor during fatigue cycling should not

exceed 60% of K.

u (Displacement)

Figure 6.21 Determination of P for three types of load-displacement response according
to ASTM standards.



6.7.3 INTERPRETATION OF TEST RECORD AND CALCULATION OF K .

The procedure for conducting the test is straightforward. A typical instrumentation for
measurement requires a clip gauge to produce a load-displacement curve. A typical record
of load-displacement for metallic materials would look like one of the three curves shown
in Figure 6.21. Type I represents nonlinear behaviour involving a large plastic deformation,
type III dominantly linear response and type II reflects the phenomenon of ‘pop-in’. From
the output record, three values Pp, Ps and Puux are extracted — Po is the load for calculation
of the fracture toughness [see Equations (6.20) and (6.21)], Ps is the limit of allowable
plastic or non-linear deformation, and Pu. is the maximum load. To identify the three
different loads, a secant line 0Ps is drawn through the origin with a slope equal to 0.95 of
the slope of the tangent to the initial linear part of the record. The load Ps corresponds to
the intersection of the secant with the test record. The load Po is then determined as follows.
If the load at every point on the record between the initial tangent line and a secant line
OPs is lower than Py as in Type I, then Py = P;. If, however, there is a load higher than
Ps between the initial tangent line and a secant line 0Ps, then Po is equal to this higher
load as in Types II and III. Furthermore, the test is not valid if Pn./Po is greater than 1.10,
where Py is the maximum load the specimen was able to resist. When a test is invalid,

it is necessary to use a larger specimen to determine K.
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7 CRACK GROWTH BASED ON THE
ENERGY BALANCE

The theories of crack growth based on the energy conservation for fracture will be introduced
in this chapter. They not only complement various methods based on the linear stress
analysis for the fracture toughness determination but also are capable of dealing with non-
linear materials behaviour. Also, the equivalence of the energy conservation approach to
that based on the linear stress analysis will be found. The energy principles, thus, provides

further benefits for understanding the fracture behaviour of materials.

7.1 ENERGY CONSERVATION DURING CRACK GROWTH

The fracture process is associated with the energy conservation. The energy is supplied to
the structural system by the externally applied load, and is simultaneously consumed when
the rupture of atomic bonds of a material takes place for a new crack surface formation,
for elastic and plastic deformations, and for kinetic behaviour. Let us consider a cracking
body creating a cracked area A [= thickness (B) x crack length (a)]. According to the law

of conservation of energy, we have,
W=A+K+T (7.1)

where J7 is the work performed per unit time by the applied load, A and K are the rates
of change for the strain energy and kinetic energy of the body respectively, and T is the
energy per unit time for increasing the crack area. (A dot over a letter denotes differentiation

with respect to time.)

The strain energy A can be broken up into two parts i.e. one for elastic work and the other

for plastic work,
A=A+ A (7.2)
where A° is the elastic strain energy and A” the plastic strain energy.

If the crack grows slowly in a stable manner, the kinetic term Kis negligible and can be omitted.
Since all the changes with respect to time are caused by change in crack size, we find that
o_ao _ 0o

=——=4— A>0 .
a a A A 7:3)



and Equation (7.1) becomes

(7.4)

ﬂV_(éN +&Vj+éE
oA a4 oA) A
Equation (7.4) describes the energy balance during the crack growth. In other words, the
work rate supplied to the cracking body by the applied load is balanced with the rate of
the elastic strain work, the rate of plastic strain work, and the energy consumption rate for

crack surface creation. From Equation (7.4), the potential energy (I1) in the system may

be defined as

al oN a
—_— = + JRS— .
HA A A 7:5)
where
[I=A-W. (7.6)

Equation (7.5) describes that the rate of potential energy reduction during the crack growth is

balanced with the rate of energy consumed for plastic deformation and crack surface creation.

7.2 GRIFFITH'S APPROACH"

The energy consumed for plastic deformation in an ideally brittle material is negligibly small

and can be omitted from Equation (7.4). Then, Equation (7.4) is rewritten as

G W _aN_a
A A A

(7.7)

The symbol G is introduced in the equation and represents the crack driving force involving
Wand A°. Equation (7.7) describes that the crack driving force is balanced with the resistance

of the material having a characteristic value of T'.

Two limiting loading cases may be considered in practice — one is the constant displacement

with varying load and the other is the constant loading with varying displacement. In the
case of constant displacement, O;’W_A =0 in Equation (7.7). Therefore, we find,

=N
7/

G (7.8)




Equation (7.8) describes the energy release rate when the energy stored in material is
released for crack growth. Hence, the symbol G is usually referred to as the elastic strain
energy release rate. In the case of constant loading, the work performed by the constant load
is approximately twice the increase of elastic strain energy (ﬂW /o4 =20A° ) ﬁA). Consequently,
Equation (7.7) becomes,

G=2 (7.9)
In this case, the energy required for crack surface creation is supplied by the external load.

Thus, G is found to be independent of the loading method and Equations (7.8) and (7.9)

can be put in the form for ideally brittle materials:
G=2= (7.10)

where the potential energy Il is defined in Equation (7.6). Also, the energy balance in

general may be written as

AIT+T)

=0. (7.11)
A
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The elastic strain energy (A°) can be calculated using the stress field and displacement (v)
around a crack tip. Let us consider a line crack of length 24 in an infinite plate subjected
to a uniform stress (o), perpendicular to the crack (Figure 7.1). The change in elastic strain

energy (AA) due to the crack length increment (Aa) is found:

MMMMM

VY vy Vvvyy vy

Figure 7.1 An infinite plate with a thickness (B) and a crack

length (@) subjected to a remote stress (o).

Aa oV 2
AA = 2BI 2y dr= B”ZO- Aa for plane stress. (bis 5.36)
0

According to the following definition for a critical energy release rate (G.),

AA
G, .=
BAa

(7.12)

the critical stress (o,) required for crack growth is given by

o, = |EC (7.13)
na

for plane stress, and

/ EG
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for plane strain. One of conclusions drawn by Griffith (1921) is as follows:

"The breaking load of thin plate of glass having in it a sufficiently long straight crack normal
to the applied stress, is inversely proportional to the square root of the length of the crack.

The maximum tensile stress in the corners of the crack is more than ten times as great as
the tensile strength of the material, as measured in an ordinary test.”

7.3 GRAPHICAL REPRESENTATION OF THE ENERGY RELEASE RATE

The graphical representation of the energy balance for crack growth is useful for interpretation
of experimental results for finding the energy release rate. The load-displacement response of
cracked plate as can be obtained from a testing machine will be discussed for three different
cases: (a) constant displacement, (b) constant load, and (c) generalised case of changing

both the load and the displacement.

YOO

a
|

Iéz>| ’ //,az

YO A ’

Figure 7.2 Load-displacement response of a cracked plate to a crack length

change from length @, t0 a, under constant displacement.

7.3.1 CONSTANT DISPLACEMENT CASE

The load-displacement response of a cracked plate is represented in Figure 7.2. Two different
crack lengths (a1 and a2) are shown for a» > ai. The straight line OA is a linear response
of the cracked plate with a crack length of and the other straight line OB is that with a
crack length of as. It is noted that the cracked plate with a shorter crack is stiffer than that
with a longer crack. The magnitudes of strain energy stored at point A and point B are
represented by area OAC and area OBC respectively. If the crack length changes from ai
to a2, the load drops from point A to point B and hence the strain energy in the cracked
plate is reduced by a magnitude represented by area OAB. Therefore, the elastic energy

release rate (G) equivalent to Equation (7.8) is graphically obtained as:
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Figure 7.3 Load-displacement response of a cracked plate to a crack
length change from @, t0 a, under constant load.
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7.3.2 CONSTANT LOAD CASE

The load-displacement response of a cracked plate is represented in Figure 7.3. Two different
crack lengths (a;and a2) are again shown for a> > ai. The straight line OA is a linear response
of the cracked plate with a crack length of @1 and the other straight line OB is that with
a crack length of a; as before. The strain energy stored in the cracked plate at point A is
represented by area OAC. If the crack length changes from a; to a2, the displacement ()
increases from point A to point B. At this point, the total energy supplied by the load (P)
is represented by area 0OABD and the strain energy stored in the cracked plate is represented
by area OBD. Thus, the strain energy released from the cracked plate due to the crack length

change is represented by
area 0BD — area 0AC

Also, the total energy lost from the total energy supplied due to the crack length change is
represented by area 0AB. However,

area 0AB = area 0BD — area 0AC

because area ABE diminishes as the crack length change Aa approaches zero. Therefore,

the elastic energy release rate (G) equivalent to Equation (7.9) is graphically obtained as:

G area (04B)

) 7.16
BAa ( )

7.3.3 GENERALIZED CASE

The previous two cases are the limiting ones and the crack growths cannot be produced
directly by the load (P) without assistance. The different crack lengths (@:) in the generalised
case shown in Figure 7.4 are, however, directly produced by the applied load. The crack
length a; is the initial crack length and a;<a:<as<as<as. As the crack length increases
during quasi static crack growth, the stiffness of a cracked plate decreases but displacement
() increases. Therefore, the elastic energy release rate (G) equivalent to Equation (7.8) or

(7.9) is graphically obtained as

;G _ area (OA A,-)

i+1
B(am - ai)

(7.17)

with i =1, 2, 3, etc.
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Figure 7.4 Load-displacement response of a cracked plate to

crack propagation with crack lengths a;< a>< as;< as< as.

In an experimental determination of G, the locations of different crack lengths are recorded
on the P-u output and the corresponding radial stiffness lines 0A; are drawn for finding
areas. The linear elastic behaviour of the cracked plate is verified by unloading if P-u follows

the radial stiffness lines.

7.3.4 G- AREPRESENTATION

The elastic energy release rate (G) may be represented as a function of crack length (2) as

shown in Figure 7.5. It is given by [see Equation (13) and (14)]

nac’
E

G k (7.18)

where f=/-)/ for plane strain and k=1 for plane stress. Figure 7.5 shows three different
stresses 63>G2>01 for various crack lengths. According to Equation (7.18) at a given stress
o1, G linearly increases with increasing crack length and reaches a critical point for fracture
(G= G.). At a lower stresses (o, and o©3), though, longer crack lengths are required to reach

the same critical point for fracture (G= Gc).
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Figure 7.5 The elastic energy release rate (G) versus crack length (a)
for a crack of length 2a in an infinite plate subjected to a uniform
stress o, perpendicular to the crack axis.

7.4 ANALYTICAL APPROACH
The analytical approach is based on the energy balance principles. From Equation (7.7)

W N _a
_ bis 7.
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we find that
Pdu =dA +GdA. (7.19)

The A without the subscript e denotes the elastic strain energy unless otherwise stated. The
Pdu in Equation (7.19) represents 4W, the infinitesimal amount of external work done,
during the crack area growth (dA), and (dA + GdA) the internal work done for strain energy

and crack growth. Equation (7.19) is the basis for the following derivations.

u

Figure 7.6 Stain energy in a linear elastic system.

In a linear elastic system, the strain energy (A) is the triangular area under a given stiffness

line (Figure 7.6) so that

dA = d(§ Pu). (7.20a)
Thus, from Equation (7.19) for the applied force P and associated displacement #, we find,

Pdu = %(Pdu + udP) + GdA (7.20b)
or

Pdu—udP=2GdA . (7.20¢)

Dividing both sides by 7, we have

d(u/P) 2G (7.21a)
d4 P?
Or
3)
G:P_2 P (7.21b)

2 dA



Equation (7.21) is practically useful for the fracture toughness determination. The derivative
@ in the equation is the rate of change of (#/P) with respect to crack area. In other words
itd?epresents the slopes of the curve in Figure 7.7 (b). It can be found experimentally using
multiple specimens for a series of different crack lengths as shown for sequence in Figure 7.7.

The specific work of fracture (R) is equal to G. for linear elastic fracture and given by

2|45
_E AP (7.210)

P=P,

P / az /a3 u/P
it P
/ /,/ as  Fracture point
/ —— 4
o
u a
@ (b)
/A
Fracture point Dj
d(u/P)
da
[]
[]
miin R

a

(©)

Figure 7.7 Analysis for experimental results from multiple specimens for different crack lengths:
(a) a series of stiffness lines for different crack lengths; (b) compliance (u/P) versus crack length;

and then (c) d(%j/dA versus crack length with a critical value at fracture.
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More analytical expressions can be derived from Equation (7.19) for quasi static linear

elastic cracking. They are

> -2R
u, =
)
dA

P=P,
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Figure 7.8 DCB Specimen

If the compliance (#/P) is theoretically known, a single specimen instead of multiple specimens
may be sufficient for the fracture toughness determination. For example, the compliance
of a double cantilever beam (DCB) specimen shown in Figure 7.8 is determined using the

deflection formula for a cantilever beam. The theoretical compliance is given by

3

Y_92 .- (7.23a)
P 3E]
so that
2
d(u/P) _2a* (7.23b)
dA EIB
Using Equation (7.21c), we find the critical fracture load (P.) as
P’ = REfB : (7.23¢)
a

7.5 NON-LINEAR ELASTIC BEHAVIOUR

The non-linear elastic behaviour may be analyzed using the same energy principles. The
symbol / is commonly used for non-linear rate of change of potential energy with respect
to crack area to be distinguished from G (strain energy release rate) for linear behaviour.
When quasi-static fracture occurs, / or G has the critical value J- or G¢ which exactly

matches the specific work of fracture given by R. Accordingly,



u

Figure 7.9 The strain energy (A) and complementary strain energy (Q).
Pdu=dA + GdA (bis 7.19)
is rewritten as
Pdu=dA + JdA (7.24)

for non-linear elastic cracked bodies. The strain energy (A) for a non-linear elastic cracked

body (Figure 7.9) is given by

A = [ Pdu (7.25)
and the complementary strain energy () is given by

Q= [udP. (7.26)
From Q=Pu—A and Equation (7.24), we have

udP=dQ— JdA (7.27)
From Equations (7.27) and (7.24), we have

oQ
J=|<2
( aA jP=mnst (7283)

and

OA
J=- =
( aA ju—const (728b)

respectively.
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Figure 7.10 Analysis for experimental results from multiple specimens for different crack lengths:
(a) a series of curves for strain energy from different crack lengths; (b) strain energy versus crack

length; and then (c) J versus displacement (u) with a critical value at fracture (J.).

Equation (7.28) form the basis for the experimental determination of /and Je. The quantity
of OA/0A in Equation (7.28b) is the rate of change of strain energy with respect to crack
area (A=Ba). Accordingly, the strain energy (A) is obtained from P-u curves [Figure 7.10(a)]
for a constant displacement (#) to construct a strain energy versus crack length (@) diagram
shown in Figure 7.10(b). Then, the values for 6A/da is plotted as shown in Figure 7.10(c).

The value of J. corresponds to the point of fracture.

If the non-linear elastic behaviour can theoretically be characterized by a power relation

(7.29a)
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where 7 is a constant, the strain energy (A) is given by

A= j Pdu = j (é—ndu (7.29b)

n

Also, from Equation (7.24), we find,

J ! {nP@ —u Q} (7.30)

and we have / in terms of C,,

1 dC 1 u""dC
J — P(1+n)/n Cl/(l—n) no_ n ) 1
1+n " dA 1+n C} dA (7.3
For n = 1, we recover the linear elastic parameter (G),
Ld| = .
G_P__P (bis 7.21b)

2 dA
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7.6 CRACK GROWTH RESISTANCE CURVE (R-CURVE)

It is possible that, as the crack grows under loading, much more energy is consumed in
the plastic deformation under plane stress than under plain strain condition. Also, such a
plastic deformation takes place as the crack grows. The crack resistance (R) curve is useful for
describing the crack growth involving a relatively large plastic deformation. The theoretical

basis is found from Equation (7.5) and R is defined as

a oN
R=—+ .
A A

(7.32)

The crack resistance (R) consists of the energy consumption rate for crack surface creation

and the rate of plastic strain work as previously discussed.

In the case of plane strain or small plastic deformation,

MW AN
R=G |=""— ,
( By ﬁAJ (7.33)

and G. or R is a constant as shown in Figure 7.11(a). Otherwise, R increases non-linearly
as shown in Figure 7.11(b). The R-curve is known as a unique property independent of

the initial crack size and the geometry of the specimen.

G.orR | ‘

Q
=

(b) (b)

Figure 7.11 Typical load (P)-crack length (a) curves for: (a) plane strain and (b) plane stress.



7.7 R-CURVE AND STABILITY

The rate at which strain energy may be released depends on the geometry of a cracked body

and the conditions of loading. Figure 7.12 shows an R-curve and a set of radial lines of
ﬂ'Uza

slope [Zgjataﬂl %O-Z for the geometry of a small crack in a large sheet for which G =
is applicable. (The radial lines for some cracked body geometries would not necessarily be
straight if a geometry factor is considered.) The slope increases as the applied stress (o)
increases. As the stress increases from zero, the available G increases from point A to point
B without the crack growth. The point B represents the minimum fracture toughness of
the material before any subsequent increase in R along the R-curve. Cracking can thus
commence at point B stably. We may compare the set of radial lines of slopes represented
by s with the other set of slopes represented by 4R $hich is independent of the initial

o da
crack length (as). At point B, and we see that

dR (G
da &l o=0p ' (734a)
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As the R increases, the slope A also increases. As the crack further grows quasi-statically
under increasing load, point C is ‘reached. At point C, we find that
i ()
da \au),, (7.34b)
The crack growth between point B and point C is stable because of the balance between

energy consumption rate and energy supply rate. However, beyond point C along the

R-curve, we find that
dR/da<(EG/ ) (7.34¢)

representing an instability condition because of the higher energy supply rate than the energy
consumption rate. The part of the R curve beyond C at which o =0 and a = ac is not observable

with the given geometry unless a longer initial crack (as) or a stable geometry is used.

at o,
C / R curve

GorJ |
|
|
B
Vo
Vo
o
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‘I
ap de

a —»

Figure 7.12 G versus a curve for constant applied stress o;

R versus a curve is also superimposed.
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7.8 GEOMETRIC STABILITY FACTORS IN ELASTIC FRACTURE

The cracking stability is also dependent on the testing machine type because the testing
machine itself stores the strain energy and/or the energy balance is not exactly maintained
unless a special control circuitry is used for controlling a crosshead. In practice, there are two
typical types of testing machines viz displacement controlled machines and load controlled
machines (Figure 7.13). The increment of the crosshead (4#%) in a displacement controlled
machine is always positive because it does not reverse the loading direction during testing. In

a load controlled machine, on the other hand, the increment of load (4P) is always positive.

Crosshead

(b)

Figure 7.13 Testing machines: (a) Displacement controlled; and (b) load controlled.

We may consider the following equation for a linear elastic cracked plate,

o 2R
d(”j (bis 7.21¢)
NP/
dA

Since R may vary during the crack propagation, the variation of R with respect to incremental
input P and output A (thickness x crack length 4) is obtained by differentiating Equation
(7.21c) to have

2 (dPJ_l dR %

ol . 7.3
P\d4) Rd4a du/P) (7:35)
dA
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For stability in a load controlled testing machine, the condition dP > 0 applies so that

d*(u/P) d*(P/u) d(P/u)

1dR_qaq* _ dA’ dA
VT /B~ d(P) 2 i) (7.36)
dA dA

Similarly, from Equation (7.22a)
po 26
P
d() (bis 7.22a)
u
dA

for stability in a displacement controlled testing machine (du > 0), we find

d*(Plu) d*(u/P)  d(u/P)

LdR_ q4> _ a4’ dA (7.37)
Rds dPu) dwP) " ()
dA dA
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In the equation, M is negative if the stiffness decreases with increasing crack length. In

the right hand sides of Inequalities (7.36) and (7.37), %% is called the geometry stability
factor (GSF) of a test specimen. It can be calculated for the stability. For example, for a DCB
specimen is calculated to have d/dA(P/u)=—9EI/2a* and d*/dA* (P/u)=36EI/2a’B* to give

l1drR_4

__>_

RdA A
for stability in a displacement controlled testing machine. If R is constant in this condition,
GSF becomes zero and accordingly the stability condition becomes 0 > -4/A. Therefore,
the DCB specimen satisfies the stability condition. If a test specimen does not satisfy the

stability condition, instability of cracking is expected. Sometimes it may be possible that

test specimens with satisfied stability conditions have instabilities if the crack front is blunt.

Also, the GSF can be calculated using a stress intensity factor relation with G (G, =K} /E)

for plane stress. From Equation (7.21b), we obtain

K;=EG, =(EP jM =Y’c’m (7.38)

2B da

where Y is the geometry factor. Accordingly, for displacement controlled machine

' 2
lﬁ>l(l+2aY) 2Y"a

Rda a Yy ) f Y4 da (7.39a)
0
and for load controlled machine
ld_Rzl(HzaY j (7.39b)
Rda a Y

where Y'=dY/da.

7.9 TESTING MACHINE STIFFNESS

The total deflection (u*) of the system including test specimen and testing machine is

given by
u*=u+CP (7.40)

where C is the compliance of testing machine. It is found that

u* u
d(pj 4 [p) (7.412)

dA dA




and

u* o u
d (pj ~ d (pj (7.41b)

4 dA
Therefore, it follows from Equation (7.36) that the stability of test specimen in the load

controlled machine is unaffected by the flexibility of the testing machine. However, the
situation is different under du>0 for displacement controlled machine, as P/u# P/u*.
Now, we have for du>0,

e (Plu)
Plu T ) (7.41¢)
so that
d(P/u)
d(P/u*) _ 44 (7.41d)
dd  [1i+C(P/u)f
and
d*(P/u) d(P/u)]’
dz(P/u*):[HC(P/ I 2C[ dA } (7.41¢)
d4? [1+C(P/u)f '
Therefore,
d*(Plu) . .d(P/u)
1dR_ 44 _2C dA (7.42)
RdA d(Plu)  1+C(P/u)’ '
dA

Inequality (7.42) may be compared with Inequality (7.37) for testing machine stiffness

effect on the stability. For increasing crack length, @ is negative and hence the value
A

of right hand side of the Inequality (7.42) increases due to the additional term. Therefore,

the stability is decreased by the flexibility of the testing machine.
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G-locus for infinitely
stiff testing machine

S— G-locus for displacement
controlled testing machine
/ V/ with finite compliance

A
) Minimum crack

displacement for

B & stability
\

u >

Figure 7.14 Effect of machine stiffness on load-deflection diagram and on R-locus.
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The testing machine stiffness effect is illustrated in load (P)-displacement (#) diagram given
in Figure 7.14. Two G-loci are shown: one for infinitely stiff testing and the other for
displacement controlled testing machine with a finite compliance. Points A and B indicate
the transition between crack lengths for stability in infinitely stiff testing machine and
displacement controlled testing machine respectively. They also indicate the minimum crack
displacements. Point B lies on a longer crack length with a lower load for transition than
point A. It is noted that, for a constant load, the energy stored in a testing machine with

a finite compliance is larger than that with infinitely stiff testing machine.

7.10 ESSENTIAL WORK OF ENERGY

Resistance to tear is one of important mechanical properties of flexible materials such as thin
polymer sheets, rubbers, etc. The trousers test under mode III loading has drawn attention
for material evaluation since Rivlin and Thomas'® considered trouser tear criterion for rubbers.
Joe and Kim" analysed the load—displacement records to determine the critical J-integral
(or just J) value and crack resistance (R). The determination of the critical J value, however,
requires the detection of the crack initiation which is not an easy task for highly deformable
materials. Alternatively, the resistance to tear may be evaluated using the essential work of
fracture (EWF) approach which was first developed for mode I fracture of ductile metals®. The
EWF approach was further developed by Mai and Cotterell*' for elasto-plastic fracture of thin
metal sheets under mode III loading using trouser specimens with various widths, taking into
account the work done in plastic bending and unbending of the trousers. Muscat-Fenech and
Atkins* expanded this Mai and Cotterell’s work for a wide range of specimen dimensions and
geometric change. For tearing of polymer sheets, however, the work for plastic bending and
un-bending of the trousers is negligible due to their low stiffness, and deformation reflected

in the model for metals cannot be translated into that for the tearing of thin polymer sheets.
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Figure 7.15 (a) Configuration of trousers test. (b) Plastic zone model consisting of zones |, V and S for

tear specimens with sufficiently long ligaments. (c) Polarised light microscopicimage for plastic deformation
in PET (0.25 mm thick) near the crack tip showing zones | and V. [After Kim and Karger-Kocsis, 2004]%
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Wong et al.** proposed a two-zone model for deformation and tearing behaviour of thin
polymer sheets under mode III loading. In the first zone, which is called zone A in their paper
and is adjoining the initial crack tip, the outer plastic zone height lineally increases with the
torn ligament and thus the zone is of triangular shape. At the end of zone A, the deformation
enters zone B. The height of the zone B remains constant with further increase of torn ligament
length. The zone A, though, did not consider plastic deformation caused by loading prior to
tearing (which is referred to as initial plastic zone in the paper). The two-zone model hence
would lead to overestimation of EWF if tearing is the case where increasing height of the
initial plastic zone does not coincide with that of subsequently following zone B. In the light
of the deficiency, Kim and Karger-Kocsis developed a three-zone model for tear fracture under
mode III loading to include the initial plastic deformation and analysis based on the EWF
approach for prediction of overall tear resistance. In tearing of thin ductile polymeric sheets,
mode III fracture mode is expected at the beginning of loading but the mode tends to be
mode I later so that tearing becomes virtually mixed mode. In this section, the three-zone

model for tear fracture under mode III loading will be introduced.


http://www.nidostudentliving.com/Bookboon

As schematically indicated for a specimen with sufficiently long ligament in Figure 7.15 (if
the ligament is not long enough, only partial deformation occurs), generally two different
types of deformation appear along the torn ligament after tearing. One is plastic deformation
and the other characterized by whitening. The whitening, accompanied by a weak change
of transparency, is found in some polymers and is of non-plastic deformation as seen in a
polarized image along the torn ligament — note photo-elastic fringe pattern does not appear
in plastic deformation. Also it did not cause any visible change in the surface texture of
the specimens. This indicates that its deformation energy would be small compared to the

plastic deformation which requires relatively large deformation energy as expected.

Therefore, the whitened zone is not included in the model formulation despite its considerable
size. The plastic zone is found to have three distinctive zones as detailed in Figure 7.15. The
three zones will be referred to as: zone I (initial), zone V (v-shape) and zone S (saturation).
Zone I is initially formed as loading increases prior to the crack propagation. After zone I
tully developed, the following events took place sequentially to form zone V: (a) change of
specimen configuration as a result of further lining up of the trouser legs with increasing
load; (b) change in the fracture mode from mode III to mode I to include more mode I
component due to rotation of the area around the crack tip; and (c) gradual increase in
duration of straining applied to the plastic zone around the crack tip as a result of increase
in plastic deformation size as the tear progresses at an almost constant speed (e.g. material
at [ =L, is subjected longer straining time than that at / = L; because material at /=L,
is strained and plastically deformed more ahead in time before the crack tip arrives at it
than material at / = L;). Thus, the zone V is the result of an evolutionary process before
it saturates. The height (/) of zone V continues to extend as the crack propagates until it
reaches zone S where the plastic deformation is stabilized and thus the height (/) becomes
constant. Based on the deformation described above, the following analysis is given. The
total work of fracture (W) for a pre-cracked test specimen can be generally divided into

two COII'IpOIlCIltSZ
Wr=W.+ W, (7.43)

where W. is the energy for yielding and tearing of the inner fracture process zone, which
is referred to as the essential work, and W, is the work for the outer plastic deformation

zone which is geometry dependant, non-essential work.



For 0<i<L,

the total work of fracture (W) for a specimen with a ligament length of /; is given for

zone | as
Wi= W= Wiet Wiy = wielit + wipdit (7.44a)

where subscript ‘i’ indicates zone I, wi is the specific EWE w;, is the specific non-EWE, ¢

is the thickness and 4; is the outer plastic deformation zone area given by
A,’ = l,h/2 :Zl»z . (744b)

This equation considers the fact that the profile of the initial plastic zone is inclined
approximately 45° to the tear path. Although different materials might have different angles,

it appears reasonable for approximation. Thus,
VVlf = Wyelit+ Wip ll-z t (744C)
or

w.
Wy = Wir = l—ltf =W, +w,l; (7.44d)

i

where wy is the specific total work of fracture. In practice, it is difficult to use this equation
for determination of wi. because /; is often too small to be varied in test specimens. The
total work of fracture (,/) for a specimen with a ligament length of (L; + /) can similarly

be written for zone V as

W= Wy= W + Wy = Wee(Li + L)t + wipA,t (7.45a)

for 0 <1, <L, where subscript v’ indicates zone V and the outer plastic zone area (4v) is

obtained as
A =L +2L1 +odl’ (7.45b)

where a is the taper angle given by

2L,
L

v

a (7.45¢)



MECHANICS OF SOLIDS AND FRACTURE CRACK GROWTH BASED ON THE ENERGY BALANCE

where A and L; would be directly measured from specimens after testing or L, can be estimated
from a plot of specific total work of fracture versus ligament length of specimen ifitisdifficult

to be identified under a microscope. The specific total work of fracture (wy, ) in this case becomes

/4

,
w = —_——
R TR
w,, (L +2L1, +al}) (7.45d)
= er‘ +
L +1

where w,, and wy. can be found by the linear regression analysis using a plot of wy versus
(L} +2L1, +ad? (L, +1)). For =L orl,=0, this equation becomes

W, =W, + vaLl. . (7.45€)
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Figure 7.16 PET with a thickness of 2.5 mm for essential work of fracture: (a) load-displacement curves;

(b) specific total work of fracture as a function of torn ligament length obtained from both experiments
and predictions based on Equations (7.44d), (7.45e) and (7.46b); and (c) linear plots with the least square
lines for data shown in ‘(a)' using L* which is (L’+2Lid,+al,>)/(Li+1,) for V zone data or
(LA +2L.L, oL’ +hd)/(Li+L,+1) for S zone data. [After Kim and Karger-Kocsis, 2004]

The total work of fracture (W) for a specimen with a ligament length of (L; + L, + ) can

similarly be given for zone S as

A=L?+2L;L,+oL? + hy (7.46a)
so that
/8 I’ +2L L +al?+hl
sf Lo
Wf:Ws — J = We + W i i v v s7s 746b
(L o+ L+ It g L+L +1 (7.46b)

where wy, and w, can be found by linear regression analysis using experimental data

from specimens with ligament length longer than (L; + L)) for a plot of wy versus

L +2L L +al’ +hl
L +L +I

a full range of data is used. The intercepts and slopes can be used for we (=wse = wye) and

s but preferably the data can be combined with those for 0 </, <L, if

Wy (Fwsp = wyp) respectively in a linear plot (see Figure 7.16).



7.11 IMPACT FRACTURE TOUGHNESS

Structural materials used for functioning components are very likely subjected to impact
loading. Accordingly, impact strength is often the deciding factor in materials selection
for such an application. The impact test methods in general may fall into two categories
according to the relative amounts of energy between striker and specimen viz: (a) limiting
energy methods, in which the striker energy is adjusted until a set damage to specimen is
found; and (b) excess energy methods, in which the kinetic energy of the striker is always
greater than the energy required to break the specimens. The falling weight test falls into the
first category, and the Charpy, Izod and tensile impact tests typically fall into the second.

The conventional test methods have the advantages of being easily and rapidly performed.
However, their results are dependent on the notch size. The problem of specimen geometry
dependence can be approached in different ways based on the fracture mechanics. One of
the ways is to obtain force (P) — displacement (%) curves from a single specimen test with
instrumented striker. The other way is to make variations in notch depth with a sharp

radius for multiple specimens.

In the Charpy test (Figure 7.17), a bar specimen is placed on horizontal supports attached
to up right pillars for central striking. The impact energy is an amount lost from the kinetic
energy of striker for breaking a specimen. The energy measurement in the Izod test is based
on the same principle as for the Charpy test. The difference between two tests is that the
lower half of a specimen in the Izod test is clamped for cantilever loading. The clamping,
though, generates the complex stress field around a notch tip, making it difficult for analysis.
In this section, a theory and method based on fracture mechanics for the Charpy impact

test will be introduced.
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Figure 7.17 Impact test type: (a) Charpy test; and (b) Izod test.
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The impact specimen breaks and flies away after being struck by the striker, involving kinetic
energy of specimen. The impact energy (Ag) measured is hence the sum of elastic strain

energy (A°) and kinetic energy of specimen (Kj), i.e.

AE :Ae + Ks. (747)

P2 —»

P2 —>

[ 1Xs
|

Figure 7.18 Impact specimen with a crack length a.
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The elastic strain energy (A°) is given by

2
pePu_ P (7.48)
2 2 P
On the other hand, from the elementary beam theory with the section modulus (2) and

bending moment (M),

PS
IV
0-27 = B2VI/22 (7.493.)
6
We find that
2 oBW?
PZE 5 (7.49b)
We know
K? Yic’m 9r ., P*S*a
G=—"L0-v)= l—-v)=22Y? 1-v? (7.49¢)
E ( ) E ( ) 4 BZW“E( )

where Yis a geometry factor. For the three point bend specimen with $=4W-
a aY aY a
YVr =1.93-3.07 — |+1453 — | -25.11| — | +25.80 — | .
w w w w

In instrumented tests, the peak force P. is measured and G;. is found directly from Equation
(7.49¢). Otherwise, for non-instrumented tests with varying notch depth (Figure 7.18),

we obtain from

u
2 d(j )
G:P_ P (bis 7.21b)
2 dAd -’
that
u
d| — 2v,2
P) 2G, 9S8Y m ) (7.49d)
= == (I-v7)
d4 P> 2BW'E
and

u or §? 2 2
:J‘d(—)+C:7B2W4E(1—V )IY a+C. (7.49¢)



To determine the integration constant, we use the deflection formula of a simply supported

beam for ¢ =0,

u 18

S (7.49f)
P 4 EBW

Substituting Equations (7.49b) and (7.49¢) into Equation (7.48), we find a practical formula

for an impact test:
A, =BW¢G,. +K, (7.50a)

where the factor ¢ can be obtained experimentally or can be calculated from

S—W+ﬂJ.Y2ada

418 (7.50b)

YiaW
The specific energy release rate (Gy.) is obtained from the slope for a linear regression line

as shown in Figure 7.19.
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Figure 7.19 Measured energy versus BW @. [After Marshall et al,1973]%
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Figure 8.1 Cyclic loading and definitions of terms for applied stress.
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Fatigue is the most common cause of service failure in mechanical components and
structures. It is a type of damage caused by cracking and deformation. The fatigue failure
takes place when subjected to cyclic loading. The stress at the failure is much lower than
the static strength. The theories with fatigue have largely been founded on the empiricism
with phenomenological analysis since Wohler curve®® was introduced in 1870. There are two
approaches for the fatigue problems viz the stress-life (S-N) curve approach to treat multiple

cracks collectively and the stress intensity factor approach to treat cracking individually.

°
¢ Fatigue limit

Figure 8.2 Schematic S-N curve.

Log N

8.1 STRESS-LIFE (S-N) CURVE APPROACH FOR
UN-NOTCHED SPECIMEN

The fatigue life is measured in a laboratory using parameters such as stress range (Ac), mean
stress (Omean), minimum stress (Gmin), and maximum stress (Omax) as shown in Figure 8.1. The
test results on unnotched specimens consist of a series of data points obtained from multiple
specimens at different stresses. The data points represent a range of different values of Gmax
or Ac corresponding to respective numbers of loading cycles to failure (/V) forming a curve
known as the S-N curve (Figure 8.2). If the S-N curve has a plateau value at a low stress,
the stress is called the fazigue limit or endurance limir. Below the fatigue limit if exists, it

is considered that the material would last for an infinite number of cycles without failure.

The S-N curve can be affected by various factors such as material surface roughness, applied
mean stress, residual stresses, specimen size, loading method (e.g. bending, tension-tension),
and temperature. If a S-N curve is used for the life prediction or design of notched

components, the notch sensitivity should be taken into account.



Un-notched specimens

Notched specimens

Log N

Figure 8.3 Schematic S-N curves for un-notched and notched specimens.

The stress concentration factor (K;) is defined as

Maximum stress
K, = >1

8.1
Average stress ®.1
and can be theoretically obtained. The difference between un-notched specimens and notched
specimens for the fatigue limit is schematically shown in Figure 8.3. Note that the average
stress is used for the S-N curve for notched specimens. Now, the fatigue limit reduction factor
(Ky) due to a notch is defined as

_ Fatigue limit for unnotched specimens>

r= . . » 1 (8.2)
Fatigue limit for notched specimens

K

for the effect of the notch in decreasing the fatigue limit. It is generally observed that K is

always greater than Ky and therefore the ratio of K/K; is in a range between zero and one i.e.

K >Ky (8.3a)
K.
0< ?f <1. (8.3b)

t

The ratio K,/K, =1 or notch root radius (r) =oo represents a limiting case where no
difference between two factors is found allowing us to theoretically obtain the fatigue limit
using the stress concentration factor (Ki). The ratio K,/K, =0 or the notch root radius
(7) = 0 represents another limiting case where the stress concentration factor (K1) is irrelevant
but taken over by the stress intensity factor. However, the two values from the two limiting
cases do not necessarily reflect a material property. Therefore, it may be convenient that the
notch sensitivity of a material in fatigue is expressed by

Kf -1

q= H (8.4)
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FATIGUE

and is called the notch-sensitivity factor (q) to have a range of values between zero and one.

When a material experiences no change at all in fatigue limit due to the presence of a notch,

Kr=1 and ¢ =0 (insensitive, which is good) for any different values of K:;. On the other

hand, when a material has its full theoretical effect, K;=K; and ¢ =1 (sensitive). It should

be noted, however, that ¢ is not a material constant but is dependant on the geometry of

specimen and notch, and the loading type.

N=1,234,..

Omax

Stress

0 & N)

Figure 8.4 Fatigue modulus.
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8.2 FATIGUE DAMAGE AND LIFE PREDICTION

Mechanical properties of materials such as fibre reinforced plastics are susceptible to fatigue
damage so that their resultant stiffness decreases under cyclic loading. In this situation, the

fatigue modulus may be useful to quantify such damage. The fatigue modulus? is defined as

Gmax

Efa = E(N) (85)

where G is the maximum applied stress and &N) is the resultant fatigue strain at Nth

cycle (see Figure 8.4).

Figure 8.5 shows examples of fatigue moduli measured for a glass reinforced composite in
comparison with stiffness. Figure 8.5 (a) shows one at a maximum stress of 436 MPa and
failed at 926 cycles; and Figure 8.5 (b) at a stress of 266 MPa and failed at 5.66 x 10°
cycles to failure. It is seen that low applied stress tends to produce more variation in the

fatigue modulus than high stress does.
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Figure 8.5 Normalised stiffness and fatigue modulus measured as a function of life for glass fibre
reinforced vinyl ester: (a) maximum applied stress = 436 MPa and N = 926 cycles; and (b)
maximum applied stress = 266 MPa and N = 566377 cycles.[After Kim and Zhang 2001]%

Fatigue damage may be defined as any permanent change due to fatigue loading. The damage

(D) is a function of a number of parameters at least, NV, Ao, R and f":
D=/(N, 46 R, J) (8.6a)

where NV is the number of loading cycles, Ao is the applied stress range, R is the stress ratio

and f'is the loading frequency.



The damage may be quantified by a normalized fatigue modulus:

D=(1 Ef”) (8.6b)

= L .
where Ej, is the fatigue modulus at Nth fatigue cycle and Ej is the initial modulus before
fatigue loading. There is a boundary condition in Equation (8.6b) for an undamaged coupon
i.e. D=Dy=0 when E; = Ey. The initial modulus can be determined in a monotonic tensile

test using
E =2 (8.60)
gu

where o is the ultimate stress and &, is the ultimate strain. As cycling progresses, Ey reduces
to Ep. It is assumed that failure occurs when the fatigue resultant strain reaches the static

ultimate strain, &N) = &. Then, Ep at failure (B is

Ej =—= (8.6d)

To predict a S-N curve, damage D is required to be a function of applied stress. Substituting
Equations (8.5) and (8.6¢) into Equation (8.6b) yields
& O

= (] - =% “max
( ‘) o, ) (8.7)

and the damage accumulated to failure [gN) = &,] becomes
o
D, =(1-—"F%),
s =( - ) (8.8)

It is important to understand the difference between damage evolution in a single specimen

and damage variation at failure obtainable from multiple specimens i.e.

dp , b,
N~ dN, (8.9)
where N = ]Vf at failure, but always
dD, AD.,
[ (8.10)

dN, AN,
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where the subscript 7 = 1, 2, 3 ... which indicate different applied stress ranges, D; (=|Dy -
Dy ) is the damage to failure and Ns is the number of cycles to failure at a given stress
range. The right hand side of the equation is associated with the experimental S-N curve
while the left hand side is associated with a theoretical S-N curve. We can determine AN;
experimentally by measuring the number of cycles to failure. If we want to determine it

theoretically using the stiffness change, the following relation needs to be established:

dD
ﬁ:f(Efa)' (811?1)
Further from Equation (8.6b)

1
dD=-—dE,,. (8.11b)
E, -
From these two equations,
E,

i A
Loap -1 1
= f _ dE (8.12)

9 ———dE,, .
E, f(Efa) EO E, f(E a)
The potential of this equation lies in its capacity to predict residual fatigue life at a given

stress by choosing appropriate integration limits.
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Now, for an S-N curve prediction it is required to establish the damage rate as a function

of applied stress range (Ao) for a given set of conditions:

dD,
1 — f(A
N, Jf( 0). (8.13)

-2

34

44

-5+
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t t } 0 +—t —t—t +—t
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(a) (b)

Figure 8.6 (a) Log damage rate obtained as a function of applied maximum stress. Correlation

coefficient = 0.96. Stress ratio =0. (b) Experimental results for maximum applied stress versus log
number of cycles obtained at 1.5 Hz and a stress ratio of zero. The curve represents prediction based
on Equation (8.15). Square symbols represent run-outs. [After Kim and Zhang 2001]

If the damage rate follows a power law:

dD
—L —ao’ (8.14a)

where constants a and f are found from the least square line for damage data as shown in

Figure 8.6(a). Then, we find

O max O max dD )
N, = de,.z I S (8.14b)
' ' d
for a stress ratio (R = Omin/Omax) of zero. From Equation (8.8), dD, =— P i . Therefore the
fatigue life (Ny) or a S-N curve can be calculated as: Ou
o’ o o
N — u _ max

The prediction based on Equation (8.15) is shown in comparison with experimental data

in Figure 8.6(b). A good agreement between the prediction and experimental data is seen.



8.3 EFFECT OF MEAN STRESS ON FATIGUE

The fatigue life (/V) generally increases as the mean stress (Gmean) or stress ratio (R) increases
at a constant stress amplitude (o). Also, we know that a material breaks when the maximum
stress (Omax) reaches the ultimate strength (0.). (Assume o, is equal to yield stress.) It is
useful to use a 64 - Gmean plane for a relation between the variables. On the 64 - Gmean plane
(Figure 8.7), it is easily found that there are two limiting cases in which two breaking
points A and B are at 6,=0 for gmew= 0, and at Gem=0 for 6.=cu. If we connect the two
points, a straight line (which is a locus of breaking points at the 1* cycle) is found for a
constant life at the same maximum stress but at different stress ratios. The same principle
for a constant life may be applied to different stress amplitudes at R=-1. Then, another point
C at a lower stress may be found from an experiment for another constant fatigue life line
CB but for a longer fatigue life. The point B is used for all other stress levels because it
is a known condition for any stress ratios. If a fatigue limit is available from a S-N curve
for R=-1, the fatigue limit line DB may be found. As a result, it is possible from a single
S-N curve to predict a series of different values of Omean and o, for different stress ratios for
each constant fatigue life. On the other hand, the dash-dot line in Figure 8.7 represents

a constant stress ratio for different fatigue lives for a given stress ratio (&), and its slope is

. :1+R (8.16a)

mean

and the stress ratio (R) is given by

R = O-min — O-mean _O-a . (816b)

O O + 0,

max mean a

(8.16a

In this way, series of constant fatigue life lines and constant stress ratio lines can be drawn
for predicting various parameters. If the constant fatigue life lines are not linear, they may

be generalized by

o, =(0,), [1—[(;} ] (8.17a)
Jll

where x = 1 for linearity (Goodman model®). For a fatigue limit (s,), at R=-1 the constant

fatigue life line is given by

o, =(o, )[1—(""1—” : (8.17b)
Uu



MECHANICS OF SOLIDS AND FRACTURE FATIGUE

Constant stress
ratio line

Omean =

Figure 8.7 Stress amplitude (04) versus mean stress (Gyean)-

If compressive mean stresses are considered, horizontal lines from points A, C, and E are
for the expected constant fatigue lives, given that that the portions of compressive stresses
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If the ultimate strength (o.) is not equal to the yield stress (0ys), another straight line CD
(which is a locus of yield points at the 1% cycle) is found in addition to the line of breaking
points AB as shown in Figure 8.8. As a result, two parallel lines can be drawn. Accordingly,
the intersects on line CD with other possible constant fatigue life lines provide the yield

limits as the stress ratio (R) increases on a constant fatigue life line.

Constant fatigue
ife lines

_A _E Yield line
Oa i ~
(Ga)o

B

0 o5 D o,

Omean =

Figure 8.8 Stress amplitude (04) versus mean stress (Gyean) for oy # Oys.

8.4 CUMULATIVE DAMAGE

When a structural component is subjected to a series of different stress amplitudes, It may
be assumed that the total fatigue life is the sum of each fraction of life (N/N;) consumed
at a particular applied stress:

£ N, N, N, N,

>—=1lor + +- 4 =1 (8.18)
=N, Ny Ny Ng

where N; is the number of cycles of operation at a stress and N;i is the fatigue life at
each corresponding stress. Equation (8.18) has been known as the cumulative damage rule
or Palmgren®>-Miner’' rule, which may be used for the calculation of the total fatigue
life. However, deviations from the rule are possible for some materials in the absence of
fundamental theoretical framework. The fatigue life estimation for random cyclic loading
due to variation of mean stress (Gmen) and stress range (Ac) may be attempted using the

rule in conjunction with Goodman model.

Example) Figure 8.9 represents the stress fluctuation pattern taking place every 15 seconds
on an alloy component. A S-N curve with a fatigue limit of 120 MPa obtained experimentally
at R=-1 is given in Figure 8.10. The alloy component has an ultimate strength (6.) of 500
MPa. Estimate the fatigue life using the cumulative damage rule and Goodman’s model.

Assume that ultimate strength is equal to yield strength. Ignore the notch sensitivity.



Solution) The fatigue life estimation may be conducted according to the following procedure:

a) locate the ultimate strength (ou) of 500 MPa on Gmea axis in Figure 8.11;

b) find values of stress amplitude (6.) and mean stress (Gmean) individually from
Figure 8.9 as listed in Table 8.1;

c) plot data points on Gmen- 6, plane to find stress amplitude at R=-1 as shown
in Figure 8.11 and then to use the S-N curve (Figure 8.10) for finding
corresponding number of cycles (V;) and

k
d) use the cumulative damage rule Z—’ =1 for the life estimation as follows. The
=1 1V 4
values of ]Vﬁ are found from the S-N curve.

Na :220 ﬁzlzo N( :izo
N, © N, © Ny oo
&=%=3.556><10’6

N, 10°

N, :%:1.127“0*4

N, 10

N, 1

N—f=1 —=7.943x10"*

A

A fraction of fatigue life spent by the pattern (15 seconds) shown:

N.
N, o+ —L =3556x10°+1.127x107* +7.943x107*
N, N,

=910.56 x10° <I.

15sec

Therefore, the total fatigue life estimate =———————
910.56x10.

=16,473 cycles.
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Figure 8.9 A stress fluctuation pattern taking place every 15 seconds.
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Figure 8.10 A S-N curve obtained experimentally at R = -1.

Designation ©max ©mean ©a Number of Comment
(MPa) (MPa) (MPa) loads (n)

a 50 0 50 2 Lower than fatigue limit
b 100 0 100 1 Lower than fatigue limit
c 150 (150-50)/2=50 100 4 Lower than fatigue limit
d 200 (200-50)/2=75 125 2 Counted
e 300 (300-50)/2=125 175 4 Counted
f 400 (400-300)/2=50 350 1 Counted

Table 8.1 Data collected.
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Figure 8.11 Stress amplitude (Oa) versus mean stress (Gmean)-

8.5 SINGLE CRACK APPROACH FOR FATIGUE

The S-N curve approach in fatigue does not account for the details of a crack although it is
useful to deal with a case where the failure is caused by the multiple cracks. A single crack
approach provides another aspect of fundamental understanding of the fatigue phenomenon
by modelling the fatigue crack initiation and propagation processes. The fatigue initiation
may be analysed at a smaller scale while the fatigue crack propagation at a larger scale. When
a component is subjected to cyclic loading, energy is consumed in the neighbourhood of
inherent small defects, which grow and coalesce, for forming a crack to be large enough to
be analysed by the principles of continuum mechanics. The crack propagation leading to

the catastrophic failure is more predictable than the initiation of a fatigue crack.

Fatigue life

ar

Useful life

Crack length (a)

Limit of non-destructive detection

>

N (number of cycles)

Figure 8.12 Typical form of crack size versus number of cycles curve for constant

amplitude loading.
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Figure 8.13 A sinusoidal load with a constant amplitude and frequency for stress intensity factor (K).
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Figure 8.12 illustrates some characteristic crack lengths (a) dependant on number of
loading cycles (V). There are relative four different crack lengths. The smallest crack length
(a;) represents the one that is big enough for fracture mechanics to apply but too small to
be detected by the non-destructive inspection technology until it grows to ai. The crack
length further grows to reach the limit of useful life (a.) before the catastrophic failure
takes place (a).

Fatigue crack propagation data at a stress ratio (R= Kuin/Knax = Omin/Omax) are obtained from
experiments on pre-cracked specimens subjected to cyclic loading, and the change in crack
length (@) is recorded as a function of loading cycles (V). The crack growth rates (da/dIN)
are then numerically calculated for corresponding stress intensity factor ranges (4K) from
the raw data. The experimental results are usually plotted in a log (AK) versus log (da/dIN)

diagram. The load is usually sinusoidal with constant amplitude and frequency (Figure 8.13).

A typical plot of a log (AK) — log (da/dIN') curve is shown in Figure 8.14. Three characteristic
Stages may be identified. In Stage I, da/dN diminishes rapidly to a vanishingly small level,
and for some materials there might be a threshold of the stress intensity factor range (4Kw),
below which no crack propagation takes place. In Stage II, a linear log (AK) — log (da/dN)
relation is usually found. As da/dN further increases, it reaches Stage III in which the crack
growth rate (da/dIN') curve rapidly rises and the maximum stress intensity factor (Kye) in the
fatigue cycle becomes equal to the critical stress intensity factor (K.) leading to catastrophic
failure. Experimental results indicate that the fatigue crack growth rate curve depends on the
stress ratio (R), and is shifted towards higher da/dN values as R increases. The Stage I has
been known to be sensitive to variations of mean stress, microstructure and environment
as expected at low stress intensity factor values and extremely slow crack growths. Stage 11
is not as sensitive as Stage III to mean stress and specimen thickness because of relatively
small plastic zone sizes at low stress intensity factors compared to those in Stage III. Also,

it represents a wide range of AK.
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Figure 8.14 Typical form of the fatigue crack growth rate curve.

One of the most widely used fatigue crack propagation empirical models for Stage II is

proposed by Paris and Erdogan®” and will be referred to as the Paris equation. It has the form

dN

where AK=K__ -K

..»and Cand m are constants for materials. Equation (8.19) represents a
linear relationship between log (AK) and log (da/dIN') and is used to determine the constants
C and m for the effects of mean stress, frequency, and temperature variation. Equation
(8.19) does not, however, describe the crack growth rates in Stages I and III. At high AK
values in Stage I, as K., approaches the critical level K., the crack growth rate approaches

infinity. Stages II and III can be represented by a modification of the Paris Equation, i.e.

da _ C(AK)' _ C(AK)"
dN 1-(K, /K. | oAk " (8.20)
K (1-R)

where R=K_;, /K., and Cand 7 are material constants. The fatigue crack growth rate (da/dN)
in Equation (8.20) approaches infinity if K,,,, =K., satisfying the requirement of the curve.
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8.6 TEMPERATURE AND FREQUENCY EFFECTS ON FATIGUE
CRACK GROWTH

Materials such as polymers are readily influenced by temperature variation. The fatigue
crack growth rate (da/dIN') generally increases with increasing temperature although some
materials display a different response. Arrhenius* proposed an expression to account for

the influence of temperature on the rate (k) of inversion of sucrose:
-AH
k= Al GXP(WJ (8218.)

where 4; is a quantity independent of, or varies relatively little, with temperature, AH is
the activation energy (kJ/mol), R(= 8.31]J/mol K) is the universal gas constant and 7 is the

absolute temperature (K).

Krausz and Krausz* related the rate constant (k) to a crack velocity based on an atomistic
model as
da

= Ak (8.21b)
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allowing us to relate this to k

da —AH
E = A2 exp(?j (821C)

and

da_daﬁ_dal

da _da at _ada (8.21d)
AN dtdN dt f

where f'is the cyclic load frequency. The fatigue crack process is affected not only by
temperature but also by the stress intensity in the vicinity of a crack. We see that the higher
activation energy (AH) the slower crack growth — AH is an energy barrier — but the higher
stress intensity factor the faster crack growth is expected. Accordingly, an apparent activation
energy (AH,) may be used to account for this and we find a term y10gAK satisfying the

Paris equation for the energy barrier reduction:
AH, =AH —ylogAK (8.21¢)

where 7 is a constant and AKX is the stress intensity factor range. Then, the fatigue crack

growth rate (da/dIN)* takes the final form for the temperature effect,

ﬂ = Bexp —AH, = Bexp(_ (AH — 7/10gAK)j (8.22)
dN RT RT

where B is an approximate constant.
The time (¢) dependence for polymers may be expressed as

E=E,t™" (8.23a)

dInk . Although
In¢

Marshall et al* indicated that & decreases at extremes of rate or temperature, the constant

where E'is the tensile modulus, Ey is the unit time modulus (at time ¢=1), and — k=

(k) is assumed to be approximately constant in a certain range for any visco-elastic process.
Williams®” related da/dN to frequency (f) based on the line zone model by the following

relationship
da .,
——oc [T (8.23b)
dN 4

where m is the Paris equation exponent which is insensitive to temperature and frequency

for many polymers so that 47 may be an approximately constant.



To accommodate both temperature and frequency in one equation, the following procedure

is conducted®. Taking log in Equation (8.23b), we have

log[j—;] oc —kmlogf . (8.23¢)

Accordingly, a series of straight lines with a slope of -km for a given AK, one line for each

temperature, can be obtained in a plot of log (da/dN) against log f-

Since the fatigue crack growth rate as influenced by temperature at a given frequency can

be described by Equation (8.22), it allows us to relate frequency to temperature by

loga,

—km =
log a, (8.23d)

where a;

~ RT
( Z;\l[ ) _( Bexp{— (AH—Ry TlogAK)Dr

and a,=--. The subscript, , denotes an arbitrarily chosen reference point in the coordinate

(] ouf s

ar=

f
system. Therefore, we obtain fatigue crack growth rate (da/dN) as
—km
dN \ f. RT .

Since Equation (8.24) has been developed for the Stage II governed by the Paris equation it
can be equated to the Paris equation. Taking logs on both equations, the following relations

are obtained

Y,

" 303RT (8.252)

and

AH
logA=log f ™ +logC—————— 8.25b
8 e/ g 2.303RT ( )
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where C'is B./f7". It should be noted that the constant B is dependent on frequency.
However, the constant C here is independent of frequency and temperature. Also, Equation
(8.25a) indicates 7 ,, is independent of frequency and temperature. Hence, Equation (8.24)

can be simplified to

ﬂ:f —km Cexp AH_}/ IOgAK (826)
dN RT

This equation expresses the combined effects of frequency and temperature on the fatigue
crack growth rate. Equations (8.23d) and (8.25) can be used to plot experimental data and
determine the constants in Equation (8.26). Equation (8.22) is recovered from Equation

(8.26) for a constant frequency, B=f""C.

8.7 FATIGUE CRACK LIFE CALCULATIONS

The fatigue crack life or a number of load cycles (/V) required for a crack to grow one-
dimensionally from a certain initial crack size g, to the maximum permissible crack length

ac is easily calculated using the Paris equation.

EXPERIENCE
FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
RUN EASIER...

203



http://s.bookboon.com/Gaiteye

Consider a fatigue crack of length (a0) in a plate subjected to a uniform stress o perpendicular

to the plane of the crack (Figure 8.15). The stress intensity factor (Kj) is given by

K,=Yom (5.15 bis)

where Yis a geometry factor and a function of &/W.

Integrating &N of the Paris equation, we find

a. a.

B da _ da
N_a{ C(AK)" J[C[YAO'\/%JW. (827

Usually Yvaries with the crack length @ and the integration cannot be performed directly but

by a numerical method. However, we may assume for estimation that Y'is an approximately
constant if the initial and final crack lengths are very small compared to the width (W).
The crack length ac is calculated from K.

Crack length a

2

|

Figure 8.15 Fatigue specimen geometry.



8.8 OVERLOAD RETARDATION AND CRACK CLOSURE

The fatigue crack propagation discussed so far has been concerned with constant amplitude
loads. It is one of types. Another type is of variable amplitude loads. In the case of constant
amplitude loads, the crack growth is more predictable. In other words, a higher fatigue
crack growth rate is expected when subjected to higher amplitude of stress intensity factor.
However, when a single overload is applied as shown in Figure 8.16, the crack length
does not increase as same rate as expected. Surprisingly, its rate is, in fact, lower than it
would have been under constant amplitude loading. This effect is shown schematically in
Figure 8.16. The crack retardation takes place when a tensile overload follows a constant
amplitude cyclic load. An explanation of the crack retardation phenomenon may be obtained
by examining the stress distribution in the wake of the plastic zone formation ahead of the
crack tip. The plastic deformation creates a compressive residual stress field reducing mode
I stress intensity factor for any subsequent lower load. The compressive residual stress tends
to close the crack. The overload leaves a larger plastic zone size than the subsequent regular
constant amplitude load. The reduction of mode I stress intensity factor depends on the
difference between the overload and the regular constant amplitude load. Accordingly, the
crack propagates after overloading at a decreased rate into the zone of residual compressive
stresses. Once it passes through the plastic zone created by the overload, its expected growth

rate is recovered as the residual stress diminishes.
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Figure 8.16 Typical form of crack length versus number of cycles curve for constant amplitude

loading and constant amplitude plus overloading.



MECHANICS OF SOLIDS AND FRACTURE FATIGUE

Plastic zone starts ’
influence I:# LN

linearity

C

Plastic zone

~~
&
O
O
=
o
&9

Crack fully open D

v

Closed part

A
Closed crack starts to T /

open I_;/

Displacement (u)

Figure 8.17 Force-displacement diagram showing the non-linearity caused by configuration change and

plastic zone formation.
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The crack closure and plastic zone formation can be detected on the force-displacement
(P-u) diagram as Elber” suggested. Since the non-linearity of a linear elastic material on
a force-displacement diagram can only be caused by two reasons — change of geometric
configuration, and material plasticity, as illustrated in Figure 8.17. When an elastic body
with a closed crack is under loading, it displays a linear behaviour until the closed-crack
starts to open at point A. As the crack opens, the crack length increases, causing the change
in geometrical configuration. Accordingly, non-linearity continues from point A until point
B at which the crack is fully open. The linearity remains from point B to point C at which

the plastic deformation sufficiently large to change the linear behaviour again.

A retardation factor®® may be defined using plastic zones in the wake of overloading. Let
us consider a crack-tip plastic zone of length (70) (Figure 8.18) at a crack length (a0) by

an overload of stress (0,) given by

K*? ola
rp0=2 ’2 =C 02 0 (8.28a)
7o, O,

70 (Plastic zone due to overload)

<t > .
_ 7pi(Plastic zone due to constant
%, load after overload)

\J\

A

Figure 8.18 Plastic zones: small one produced by constant amplitude and large one by overload.

and another plastic zone size (7») when the crack has propagated to a length @: at a stress
(0i) is calculated as

2
O-i a[
r,,=C—= (8.28b)

O




where C is a constant. The plastic zone (7)) due to the stress (o:) is within the overload
plastic zone (7p0). The retardation is due to the difference (=1 - 7)) and a retardation factor

¢ is given by

_| T "
= : (8.28¢)

where A=a,+7,,—a; and m is an empirical parameter. Then, the retarded crack growth

da S
rate [— for a; +7, <d, +71,, is given by
R

(ﬂj =¢[ﬂj (8.28d)
dN ), "\ dN
where da/dN is the constant amplitude crack growth rate unaffected by the overload. We

see that, when the crack has propagated through the overload plastic zone, the crack length

a,+r, becomes greater than a,+r,, and the retardation factor also becomes ¢ = 1.

Elber introduced a model based on the crack closure for stress ratio (R) effect on fatigue

crack growth.

Number of cycles

Figure 8.19 Stress intensity factor at crack opening at different stress ratio (R) values.

It is based on the fact that the faces of a fatigue crack subjected to zero-tension loading
close during unloading, and compressive residual stresses act on the crack faces at zero load

at R=0. An effective stress intensity factor range is defined by

(AK),; =K — K (8.292)
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where K,, corresponds to the point at which the crack is fully open (Figure 8.19). Using

the Paris equation we can find for Stage II,

da

—=C(UAK )"
N (UAK ) (8.29b)
where
U Kmax_Kop 8.2
_Kmax _Kmln ( ' 9C)

It was experimentally found that

U=0.5+04R (8.29d)
where
K .

R=K—m‘“for— 01<R<0.7. (8.29¢)
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Figure 8.20 Crack growth rate and stress intensity factor range for different stress ratios, R= 0, 0.33,
0.5, and 0.7: (a) crack closure included [After Hudson, 1969]%"; and (b) crack closure excluded for
AKep. [After Elber 1971]

Figure 8.20(a) shows crack growth rate (da/dIN') as a function of stress intensity factor range
(4K) for different stress ratios, R= 0, 0.33, 0.5, and 0.7, displaying the stress ratio effect.
The crack growth rate (da/dN) is re-plotted as a function of effective stress intensity factor
range (AKy) in Figure 8.20(b) according to Equation (8.29b). It appears that a single

curve fits the data from a wide range of stress ratios.

8.9 VARIABLE AMPLITUDE LOADING

The prediction of the fatigue crack growth under a variable amplitude loading by simply
summing up the individual fatigue lives from respective constant amplitude loads in the
loading history may lead to conservative values due to the overload effect. However, the
Paris equation may be applicable if we find an appropriate distribution function of AKfor

a small block of loads. Barsom** demonstrated that the root-mean-square value of the stress

intensity factor AK,, is useful, which is given by

rms

(8.30a)




where 7y is the number of loading amplitudes for each block or random cycles with a stress

intensity factor range of AK; for various variable loading types as given in Figure 8.21.

Accordingly, the Paris equation becomes

da
—=C|AK "
dN ( rms)

Load

A M a0
\/\/\/\/ \/\/ \/\/\/

~
=3
~

(d)

2 blocks (1000cycles)

>

(8.30b)

Figure 8.21 Variable amplitude loading: (a) random sequence, (b) descending sequence,

(c) ascending sequence, and (d) combined ascending-descending sequence.

It has been found that the average fatigue crack growth rate (da/dIN') under random sequence

or ordered-sequence loading fluctuation spectra is approximately equal to the rate of fatigue

crack growth obtained under constant amplitude cyclic loading.



8.10 FATIGUE NEAR THRESHOLD AND MEASUREMENT METHODS

The fatigue threshold stress intensity factor range (AKu) is the one that corresponds to zero
crack growth although it can be defined by an arbitrary crack growth rate for practicality.
Most fatigue data do not show a clear AKy. In designing structural components subjected to
cyclic loading it is important to determine the fatigue threshold stress intensity factor (AKu),
below which a crack does not grow. However, important as it is, a ‘tru¢’ AKau is difficule
to measure since this requires very long testing times. Usually, near-threshold fatigue crack
growth rates of less than 107'° m/cycle are determined and then used to estimate AKy,. Even
so, obtaining the near-threshold crack, growth data is a tedious time-consuming procedure.
Also, the threshold data vary depending on the experimental technique so that a thorough

understanding of various techniques is important for all users of threshold data.
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The method desired should be able to reduce AK as quickly as possible without load history
effects to reach a very low crack growth rate (da/dN), but if AK is reduced abruptly it causes
the retardation in fatigue crack growth resulting in a higher value than true near-AKy. Load
shedding can be conducted either manually or continuously by computerised automated
control. The automated technique is preferred to avoid the intensive manual labour for
processing raw data from measurements of crack length positions with corresponding loads.
Also, a load-shedding schedule is required to efliciently minimise the load retardation effects.

In this section, various methods employing load-shedding schedule will be introduced.

8.10.1 CONTINUOUS K-DECREASING METHODS

A continuous K-decreasing method was proposed by Saxena et al® and recommended by
ASTM E24 Committee with

AK=AK, exp[C(a—a, )] (8.31a)

Here (AK . a.) and (AK,a) are initial and instantaneous values respectively of applied stress

27

intensities and crack lengths. The constant C has a physical dimension of length given by

_ 1 sk
da

C <0.08mm™ (8.31b)
A limit on C assumes that there is a gradual decrease in AK so that the rate of the fractional
change of the estimated plastic zone size (rp) remains constant with increase in # and
that there is no overload effect on crack growth if the decrease is sufficiently gradual. The
acceptable values of C depend on test conditions. If K-increasing and K-decreasing fatigue
data agree with each other, then the chosen value of C is permitted. This means that C can
only be selected from separate experiments if it is not already established for the particular

material to be tested. Accordingly, this method requires very long testing times.

8.10.2 LOAD SHEDDING USING A DAMPING COEFFICIENT

144

A load shedding method proposed by Bailon et al** employs

AP =AP, exp(~ ON) (8.32a)

where AP and 4P; are the instantaneous and initial load, N is the number of elapsed cycles
and Q is a damping coeflicient given by
1 drp

Z N (8.32b)
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Figure 8.22 Load shedding using a damping coefficient. [After Bailon et al, 1981]

The basic principle of this method is to approach AKy by steps of load shedding according
to Equation (8.32a) until crack arrests at AK, (subscript @ denotes arrest) which is larger
than AKy due to overloading effects (Figure 8.22). The test is resumed with a new set of
values for Q (half the previous magnitude) and AP: (and hence AK;, which is half the sum
of the original AK; and the associate AK,). Values of AK,, which are similar for the last two
or three iterative steps indicate that AKy has been reached. As opposed to the ASTM method
for which dK/da is maintained constant, this method uses decreasing dK/da gradients in
the load shedding program. It was claimed that this method provides 50% better efficiency
than the ASTM method. However, it also requires some preliminary tests to determine the

best damping coeflicient Q.

8.10.3 CONDITIONAL LOADING BY ITERATION

The principle of the method, proposed by Kim et al®® is to search AK corresponding to a
given da/dN by an iteration scheme conditionally. The condition is imposed on the crack
growth rate. If the current crack growth rate (da/dN). is higher or lower than the initially
set (da/dN)i, Ky is either decreased according to

K () =K sty (8.33a)

max(n)



Y

A

&)

I C)
=
I
W
[S—

n=5| n=6 |n=6 |n=6

No of cycles

Figure 8.23 lllustration of conditional loading.

In the past four years we have drilled

81,000 km

That's more than twice around the world.

Who are we?

We are the world's leading oilfield services company. Working
globally—often in remote and challenging locations—we invent,
design, engineer, manufacture, apply, and maintain technology
to help customers find and produce oil and gas safely.

Who are we looking for?

We offer countless opportunities in the following domains: ‘ ‘

= Geoscience and Petrotechnical
= Commercial and Business

If you are a self-motivated graduate looking for a dynamic career,

apply to join our team. What will you he?

careers.slb.com Schiumbeprger



http://s.bookboon.com/Schlumberger1

or increased according to

L Koy (8.33b)

K max(n—l) 2n

max(n) =K
where 7 is the number of iterations and K. is an initially set relatively high stress
intensity factor range. The procedure follows as illustrated in Figure 8.23. Point A is at the
first allocated Kuar ) and hence at the largest plastic zone size at a stress ratio (R) so that
(da/dN). is higher than (da/dN);. Accordingly, Equation (8.33a) applies to get to point B with
n=2 at which overloading effect is high due to the large drop of Kuu ) to Kimaxz and as a
result, the condition (da/dN).<(da/dN); is found at point C and Equation (8.33b) with 7=3
applies to get to point D for Kua 3. If (da/dN)>(da/dN); at point E and crack grows out of
calculated plastic zone due to overload, Equation (8.33a) with #=4 applies to decrease the
loading. Further, decrease in loading follows since (da/dN)c>(da/dN); with the same 7=4 to
reach point G. The same conditional loading continues for the subsequent points H, I, J

and so on. The iteration is terminated when the following convergence criterion is satisfied,

1)K

max(n)

|Kmax
Tolerance< (8.33¢)

max(n-1)

At the end of the iterative procedure the current and previous plastic zone sizes become
essentially the same, being defined by a low tolerance (say 2%) set in the computer
program. Also, to avoid overloading effects, the crack growth may be allowed to advance
twice as long as the plastic zone created by the previous AK only when (da/dN)->(da/dN);.
The crack tip plastic zone size is calculated according to the Dugdale’s plastic zone model
i.e. rp=(7r/8)(Kmm(/O'y,.)z. The procedure is summarised in Figure 8.24 and comparisons of the
efficiency of ASTM and the present methods for near-threshold crack growth measurement
at R=0.1 and 5Hz are given in Table 8.2.

The threshold fatigue data points at low da/dN values measured with the present method
for a uPVC pipe material is shown in Figure 8.25.



4.3x10¢ 0.7 6.67 53.10 17.34
1.49x107 0.7 2.17 160.80 22.45

10x10° 0.2 1.8 - 225.66

Table 8.2 Comparison of the efficiency of ASTM and the present methods for near-threshold crack growth
measurement at R=0.1 and 5Hz. [After Kim and Mai, 1988]

2Tolerance limit set for the present test method only but ASTM method with C= 0.08 mm™" in Equation (8.31a).
b Not available because of unnecessary long times.

[nput parameters:

da/dN, Knax@, Hz, Stress ratio, oy

!

Initialisation:
V=0, n=0

A 4

Cycling |e¢

No Yes
|(IK,,W(,7. 1) = K maxin 1)/ Kmax@n-1 < Tolerance I—->|Calculate AK

Yes
|AN<dN/da x Resolution x 3 HM < (2/8) X (Kmax/0ys)

No

I Yes

v

< No

A 4
|Current crack length? |

Yes

|Aa/AN < given Aa/AN |_.>|V:V+1 WKW ) =Kmax -1+ Knax@y/2" >

A 4
K nax (n) =Knax n-1) = mec(i)/2n

Figure 8.24 Flowchart of the conditional loading by iteration: Resolution is for a travelling microscope

for crack length measurement; R is the stress ratio; and 0ys is yield stress. [After Kim and Mai, 1988]
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Figure 8.25 Fatigue crack growth of uPVC pipe material. [After Kim and Mai, 1988]

A variation of the method can be made if we keep K. constant for measuring a AK
corresponding to a da/dN. The same algorithm can be used by replacing Ky with AK in
Equation (8.33a) and (8.33b). Since there is no overloading effect when K. is constant,
near- AK,, can be obtained more quickly than any other method. However, it is difhicult
to obtain near-AK, for low stress ratios because it is not possible to obtain near- AK, at

a particular stress ratio nominated.
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8.11 INTERPRETATION OF FATIGUE CRACK GROWTH IN P - U AND
R - A DIAGRAMS

The incorporation of the threshold AK,, on a force (P)- displacement (u) diagram may be
useful for understanding from a different perspective. As shown in Figure 8.26 (a) and (b)
for stress ratios, R =0 and R > 0 respectively, three different Stages are indicated. Stage I is
the area of near-threshold fatigue growth. The crack growth in Stage II is governed under
the Paris equation, and Stage III includes near- and catastrophic failure, as also described
in Figure 8.14. On loading from point 0 to B, fatigue crack starts to grow, which is well
below the static fracture point C. As the fatigue crack further grows, stiffness decreases and
reaches point D at which catastrophic fracture takes place. When the loading is not high
enough, however, for crack growth, the threshold at point A and along the line AE can
be identified for specimens with different crack lengths. Threshold-K. can be converted
into G (energy release rate) and a G, locus of magnitude %) for plane stress or

(%(1_‘/2& plane strain is found, the shape of which of course depends the geometry

of the test specimen.
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Figure 8.26 Interpretation of constant load range fatigue crack growth in

P-u diagram when there is a fatigue threshold G,,.
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Figure 8.27 Interpretation of constant load range fatigue crack growth in
G-a diagram when there is a fatigue threshold AGy,.
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The same information (with the same symbols) can be shown on a G-z (or R-2) diagram
(Figure 8.27). For both stress ratios, R = 0 and R > 0, radial lines are drawn for constant
loads, Pue and Puin, and varying crack length () according to G =o’7m/E. The fatigue
crack growth start at point A and grows until point B at which G becomes the critical
value G (or R) and catastrophic failure takes place. As the crack length decreases for a
given loading condition, Stage I area is found, at which near-threshold fatigue crack growth
takes place. Again, the crack growth in Stage II is governed under the Paris equation, and

Stage III includes near- and catastrophic failure, as also described in Figure 8.14.
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8.12 SHORT CRACK BEHAVIOUR IN NEAR-THRESHOLD FATIGUE

The short crack is referred to as the one that is comparable with microscopic features such
as grain size and small defects. An example of short surface crack behaviour is given in
Figure 8.28. Its crack growth rate does not vary monotonically but fluctuate, displaying
peaks and valleys, which is sensitive to grain boundaries. The short cracks are also sensitive
to the orientation of the grain. Thus, the crack growth would smoothly increase if all grains
are favourably oriented, or zigzag otherwise, with partial or complete arrest in some cases.
Such behaviour is illustrated in comparison with a long crack in Figure 8.29. Also, it is
obvious that the crack growth rates of short cracks are higher than that of the long crack.
The anomalous behaviour of the small cracks does not obey the same propagation laws
which we apply to the long cracks. The stress intensity factor range (AK) is not as much
useful for the fail-safe design if the crack is smaller than some critical length, typically 1

mm in metallic or polymeric materials.
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Figure 8.28 Growth behaviour of short cracks in Al 2024-T3 during cyclic
loading at R=-1 and 20 kHz. [Blom et al, 1986]4

Another aspect of short crack is associated with the crack closure. According to one-

dimensional plastic zone size (7,) equation

KZ 2
r= 1220?_, (bis 6.1a)
2ro,, 20,




r, is proportional to the crack length (a). In other words, as the crack length decreases, the
compressive residual stress created by the plastic deformation decreases and hence the crack
closure diminishes. Some supporting evidence is given in Figure 8.30. Near-threshold stress
intensity for small and large cracks are shown in the figure for difference between effective

AK,, and apparent AK, due to diminished crack closure effect.

107

Long crack

[~ Micro cracks
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Figure 8.29 Crack growth behaviour of short and long cracks
in aluminium alloy. [After Chan and Lankford, 1983]+
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Figure 8.30 Data for threshold stress intensity for small and large

cracks for difference between effective AK, and apparent AK,
due to diminished crack closure effect. [Blom et al, 1986]
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Scatter is an essential feature of short-crack data because individual small cracks behave
differently. The analysis based on continuum mechanics for long cracks is hardly applicable
to the anomalous behaviour of the short cracks. Then, an important question arises as to

how we conduct the fail-safe design against small cracks. The important steps may be to

a) define the difference between short and long cracks,
b) find common variables between short and long cracks, and

) apply the relevant theories for short and/or long cracks.

We know that the behaviour of small cracks is reflected in a S-N curve with scattered
data points and the long crack is still validly treated within the framework of continuum
mechanics. We also know that the common variables are applied stress and crack length
(@), allowing us to display two different equations based on the two different approaches
together on a 0-a plane. The stress intensity factor for threshold (AK, ) with a corresponding

applied stress range (Ao 4) is given by

AK, = Ao, Nm (8.34a)
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so that

logAo,, = logﬂ—%loga. (8.34b)

Jz

This equation is plotted on logarithmic scales in Figure 8.31 with the fatigue limit (Ao).

The fatigue limit is independent of the crack length.

Fatigue limit (Aoy)

N ~_ y—"

Equation (8.34b)/J

Aoy (log scale)

Crack length, a (log scale)

Figure 8.31 Kitagawa plot*® of threshold stress range Aoy as a function of crack length and
fatigue limit (AGo).

The limitations of the stress intensity factor approach are clear in the figure. As the crack
length approaches zero, Agy, approaches o with a slope of 0.5 according to Equation (8.34b).
However, we know that if the crack length is zero, for a perfectly polished specimen, the
threshold stress for fatigue is not infinity, but is equal to the fatigue limit (Agy). Therefore,
the crack length at which two lines intersect with each other becomes the demarcation point
between short and long cracks. The representation shown in Figure 8.31 is often called a
‘Kitagawa’ plot after one of its originators. The plot also explains that the small cracks grow

at applied AK values lower than AK, measured for long cracks.

In practice, the experimental data for near-threshold takes the form shown in Figure 8.32.
The measured threshold data points deviate from Equation (8.34) for the long crack and
eventually merge with the fatigue limit. The curved region on the figure is lower than the
fatigue limit or the long crack threshold stress. It may be useful to describe the characteristics
of two different crack lengths in addition to the demarcation point (as) although those are

not explicitly definitive due to the smooth transition:



a) ai is the length at which the fatigue behaviour deviates from the fatigue limit.
As such, it is the longest crack length at which the fatigue limit is still a material
property. Therefore, if inherent crack lengths of a material are longer than a,
its fatigue limit may be lowered and hence is no longer the material property.
Accordingly, it is possible that some materials would not have a fatigue limit if
they contain relatively long cracks produced during manufacturing.

b) a» is the length at which its behaviour deviates from that of long-crack for the

transitional behaviour.

Such a transitional behaviour can be described by adding a constant length (a0) to the

crack length (a), i.e.

AK, =Aath,/[7z(a+a0 )] (8.35)*

As the crack length decreases, according to this equation, the constant length () constitutes
an increasing fraction of (a0 ¥@) yneil at very short lengths. An example is given in
Figure 8.33(a) for ay =2 and AK, =20. The curve and fatigue limit are dependent on the
choice of ay value. If we choose a shorter length @y =1, the curve displays a higher fatigue
limit as shown in Figure 8.33(b). Equation (8.35) may be useful for an initial estimation
using only near threshold-K.. The value of as, however, does not a physical basis for

understanding the transitional behaviour.
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Figure 8.32 Typical experimental behaviour of short cracks, plotted on the Kitagawa
diagram. [After Kitakawa and Takahashi, 1976]
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Figure 8.33 Comparison of Equations (8.34) and (8.35) for different crack lengths
(ao) = 1 and 2 with Agy, =31.5 (or log (Agy) =1.5).
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