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Of Symbols

Area

width

buckling coefficient

diameter

modulus of elasticity, Young’s modulus

shearing factor

external force

factor of safety

modulus of rigidity

height

second moment, or moment of inertia, of the area A respect to the z or y axis
polar moment of inertia of the area A

length

elongation of bar

bending moment, couple

normal or axial force

first moment of area with respect to the z or y axis
radius of gyration of area A with respect to the z axis
radius

reaction at point i

length of centreline

torque

thickness

change of temperature

strain energy density

strain energy

volume

transversal force

uniform load

deflection

area bounded by the centerline of wall cross-section area
coefficient of thermal expansion (in chapter 2)
parameter of rectangular cross-section in torsion
shearing strain

strain

angle of twist

slope at point i

shearing stress
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T, allowable shearing stress
o stress or normal stress
Ol allowable normal stress
o maximum normal stress
O\ von Misses stress

1ses
oy normal or axial stress
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Preface

This book presents a basic introductory course to the mechanics of materials for students of mechanical
engineering. It gives students a good background for developing their ability to analyse given problems
using fundamental approaches. The necessary prerequisites are the knowledge of mathematical analysis,

physics of materials and statics since the subject is the synthesis of the above mentioned courses.

The book consists of six chapters and an appendix. Each chapter contains the fundamental theory and
illustrative examples. At the end of each chapter the reader can find unsolved problems to practice their
understanding of the discussed subject. The results of these problems are presented behind the unsolved

problems.

Chapter 1 discusses the most important concepts of the mechanics of materials, the concept of stress.
This concept is derived from the physics of materials. The nature and the properties of basic stresses,

i.e. normal, shearing and bearing stresses; are presented too.

Chapter 2 deals with the stress and strain analyses of axially loaded members. The results are generalised

into Hooke’s law. Saint-Venant’s principle explains the limits of applying this theory.

In chapter 3 we present the basic theory for members subjected to torsion. Firstly we discuss the torsion

of circular members and subsequently, the torsion of non-circular members is analysed.
In chapter 4, the largest chapter, presents the theory of beams. The theory is limited to a member with
at least one plane of symmetry and the applied loads are acting in this plane. We analyse stresses and

strains in these types of beams.

Chapter 5 continues the theory of beams, focusing mainly on the deflection analysis. There are two

principal methods presented in this chapter: the integration method and Castiglianos theorem.

Chapter 6 deals with the buckling of columns. In this chapter we introduce students to Euler’s theory in

order to be able to solve problems of stability in columns.

In closing, we greatly appreciate the fruitful discussions between our colleagues, namely prof. Pavel

Elesztés, Dr. Michal Cekan. And also we would like to thank our reviewers’ comments and suggestions.

Roland Janco

Branislav Hu¢ko
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4 Bending of Straight Beams

4.1 Introduction

In the previous Chapters we have discussed axial loading by vector analysis, i.e. the vectors of applied
forces and moments coincide with the direction of the member’s axes. Now we are going to investigate
transverse loading, i.e. the applied loads cause that some of the internal force and moment vectors to be
perpendicular to the axis of the member, see Fig. 4.1. The presented bar in the clamp, used for gluing
sheets of plywood together, is subjected to the bending moment M = Fd and the normal force N = F The
cantilever beam is subjected to the bending moment M, = Fx and the shear or transverse force V, = Fx.
In these cases, where perpendicular internal moment vectors are contained, the members are subjected
to bending. Our discussion will be limited to the bending of straight prismatic members with at least
one plane of symmetry at the cross-sections, see Fig. 4.2. The applied loads are exerted in the plane of
symmetry, see Fig. 4.3. Under these limitations we will analyse stresses and strains in members subjected

to bending and subsequently discuss the design of straight prismatic beams.

Fig. 4.2
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Fig. 4.3

4.2 Supports and Reactions

Fig. 4.4 Basic supports

13
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As we mentioned before in a step-by-step approach, the first step is to draw the free body diagram, where
the removed supports are replaced by corresponding reactions. The four basic supports and reactions

are represented in Fig. 4.4.

The next step in the step-by step solution is to calculate the reactions using equilibrium equations. If
the bending problem is in a plane, then the beam has three degrees of freedom (DOFs). To prevent
motion of the beam, the supports must fix all three DOFs, see Fig. 4.5. Thus we obtain the equilibrium

equations as follows

YE =0 YE =0

XE =0 or XYMz =0

Y My =0 M, =0 (4.1)
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Fig. 4.5 Free-body-diagrams

4.3 Bending Moment and Shear Force

Fig. 4.6

The method of section is applied for determining the distribution functions of bending moments and
shear forces. The positive orientation of shear force is explained in Section 1.2, see Fig. 1.7. The positive
sign in the bending moment depends on the deformation. Let us consider only a bending moment
exerted in the arbitrary section of a beam, see Fig. 4.6. This bending moment can be replaced with the
moment couple M = Fd. These force systems are equivalent. The upper force is the compressive
force and the lower force is tensile. Thus the positive bending moment causes a compression in the
upper portion of the beam and simultaneously causes a tension in the lower portion of beam, see Fig.
4.7 and the negative bending moment results in an opposite beam deformation. The effects of positive

and negative bending moments on beam deformations are also presented in Fig. 4.7.
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Fig. 4.7

4.4 Shear and Bending Moment Diagrams

Fig. 4.8

For determining and drawing the shear force, or simple shear and bending moment diagram, we must
strictly apply the step-by-step solution, for more details about this approach see Section 1.6. Let us explain
the whole procedure on a simply supported beam, see Fig. 4.8(a). In this beam we have two portions,
namely portion BC which we denote as the first and portion CD which we denote as the second. Drawing
the free body diagram and solving the corresponding equilibrium equations we get the reactions, see
Fig. 4.8(b). Then, cutting the beam at an arbitrary point QQ from the left side to the right one for portion
BC, see Fig. 4.9(a) we draw this separated portion BQ and replace the effect of the removed part by adding

positive internal forces in section Q,Q,, see Fig. 4.9(b) and thus get the following equilibrium equations

XFy =0 V1(X1)—R3y=0
ZMQl =0 M;(xq) — Rpgyx1 =0 (4.2)

Solving for equations (4.2) we get
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Vi(xy) = Rpy = 2

M;(x1) = Rgyx; = §x1 (4.3)
Next, cutting portion CD at an arbitrary point Q, from the right side to the left, see Fig 4.9(c), we get

XF, =0 Vo(x3) +Rp =0

ZMQZ =0 M;(x3) — Rpxy =0 (4.4)
or

F
Vo(xy) = —Rp = -3

F
My (x3) = Rpxy =S x} (45)

Fig. 4.9

Then we can draw the shear and bending moment diagrams, see Fig. 4.9(d) for the shear force and for

the bending moment, Fig. 4.9(e).
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Introduction to Mechanics of Materials: Part Il Bending of Straight Beams

A great disadvantage when using the above mentioned approach is the use of two functions for the shear
forces and two functions for the bending moments. Considering the beam with ten different portions,
then we will get ten different functions for the given variables! To overcome this inconvenience, we
can apply singularity functions for determining the shear and bending moment diagrams. The use of
singularity functions makes it possible to represent the shear V and the bending moment M by a single
mathematical expression. Lets again consider the previous problem of the simply supported beam, see
Fig. 4.8. Instead of applying two cuts in opposite directions we will now assume the same direction for

both cuts. Thus we get the following shear and bending moment functions

F
Vi (x) = Rp, = 2

M;(x) = Rgyx = - x for 0 <x <L/, (4.6)
and

Vo (x) = Ry, F=§—F=——F(x—§)0

Mz(x)=RByx—F(x—§)=§x—F(x—§)1 for L/ZSxSL (4.7)
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By simple comparison of equations (4.6) and (4.7) the presented functions can be expressed by the

following representations

V() ==L F (x4

M(x) == gx —F{x— %)1 (4.8)

and we specify, that the second term in the above equation will be included into our computation
if x > L/Z’ and ignored if x < L/ o- In other words, the brackets ( ) should be replaced by ordinary
parentheses( ) when x > L/2 and by zero if x < L/z.

The functions (x — %)0, (x — g) are called the singularity function and by their definition we have

0 when x < a
| .

x—a)® when x=>a

(r=ay = {

Fig. 4.10

The graphical representation of the constant, linear and quadratic functions are presented in Fig. 4.10.
The basic mathematical operations with singularity functions, such as integrations and derivations, are

exactly the same as with ordinary parenthesis, i.e.

[{x —a)*dx = L1‘.’;:{ —a)*t?

nt+l

:—I{x —ay*=n{x —a)™? (4.10)
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Fig. 4.11

Fig. 4.12

Now when the beam is subjected to several loads, we can then divide them into individual basic loads
using the principle of superposition. Thus the shear and bending moment at any point of the beam
can be obtained by adding up the corresponding functions associated with each of the basic loads and

reactions. The singularity functions for simple loads are represented in Fig. 4.11.
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In the following problem Fig. 4.12, an illustrative application of the singularity functions can be seen.
Our task is to find the distribution functions of shear and bending moment. At first we divide the applied

load into basic loads according to Fig. 4.11 and then apply the principle of superposition to get

V(x) = Rpy {x — 0)° + F{x — b)® — wo{x — c)* + wp{x —d)*

M(x) = Rpy(x — O)' + Mo(x — a)° + F(x — b)* —%WO(X —c)? +%w0(x — d)?

Fig. 4.13
The last two terms in the above equations represent the distributed load that does not finish at the end
of beam as the corresponding singularity function assumes. The presented function in Fig. 4.11 is the
open-ended one. Therefore we must modity it by adding two equivalent open-ended loadings. To clarity

this statement, see Fig. 4.13.

4.5 Relations among Load, Shear, and the Bending Moment

Fig. 4.14
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Introduction to Mechanics of Materials: Part Il Bending of Straight Beams

Sometimes the determination of internal forces may be cumbersome when several different types of
loading are applied on to the beam. This can be greatly facilitated if some relations between load, shear,
and bending moment exist. Therefore, let us now consider the simply supported straight beam subjected
to a distributed load w, see Fig. 4.14. We detach portion DD’ of the beam by two parallel sections and
draw the free body diagram of the detached portion. The effects of the removed parts are replaced
by internal forces at both points, namely the bending moment M and the shear force V at D, and the
bending moment M + AM and the shear force V + AV at D’. at D’. This detached portion has to be

in equilibrium, then we can write the equilibrium equations as follows

Y Fyoay =0 (V+AV) =V +whx =0

2
Y My =0 (M +AM) — M +w=-—VAx =0 (4.11)

after some mathematical manipulations we get

AV = —wAx or v_ —-w
Ax
Ax? AM Ax
AM—VAX—WT or E_V_WT (4.12)
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approaching Ax to zero, we get

av _
dx
aM

=V (4.13)

These relations between the applied load, shear force, and bending moment are known as Zhuravsky’s
theorem (D.I. Zhuravsky, 19" century). We should also note that the sections were made from the left to
the right side. If we make the sections in the opposite direction, the results will have the opposite sign.

Therefore the complete Zhuravsky theorem can be stated as follows

-
o +w
a
- =1V (4.14)
4.6 Definition of Normal and Shearing Stresses

Let us consider the cantilever beam BC subjected to an applied force at its free end, see Fig. 4.15.
Applying the step-by-step solution, we get the shear function and bending moment function as
V(x) = F and M(x) = Fx respectively. These two functions represent the combined load on the
cantilever beam. The bending moment M (x) represents the effect of the normal stresses in the cross-
section, while the shear force V (X) represents the effect of the shearing stresses. This allows us to simplify
the determination of the normal stresses for pure bending. This is a special case when the whole beam,

or its portion, is exerted on by only the bending moment, see the examples in Fig. 4.16.

Fig.4.15
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Fig. 4.16

Firstly, let us consider the effect of the pure bending moment M (x). Let us consider the cantilever beam
with a length L subjected to the moment couple M, see Fig. 4.16(b). The corresponding bending moment
M(x)=M obtained by the method of section. This bending moment represents the resultant of all
elementary forces acting on this section, see Fig. 4.17. For simplicity the bending moment considered

is positive. Both force systems are equivalent, therefore we can write the equivalence equations
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YE =0 [o,dA=0

XM, =0 or [zo,dA=0
LM, = M) J=yo,dA =M(x) (4.15)
Fig. 4.17

The rest of the equivalence equations can be obtained by setting the sum of the y components, z
components, and moments about the x axis to be equal to zero. But these equations would involve only
the components of shearing stress and the components of the shearing stress are both equal to zero! As
one can see, the determination of the normal stress is a statically indeterminate problem. Therefore it

can be obtained only by analysing the deformation of the beam.

Let us analyse the deformation of the prismatic straight beam subjected to pure bending applied in the plane
of symmetry, see Fig 4.18. The beam will bend uniformly under the action of the couples M and M, but it
will remain symmetric with respect to the plane of symmetry. Therefore each straight line of undeformed
beam is transformed into the curve with constant curvature, i.e. into a circle with a common centre at C. The

deformation analysis of the symmetric beam is based on the following assumptions proven by experiments:
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Fig. 4.18

transverse sections remain plane after deformation and these sections pass through a
common point at C;

due to uniform deformation, the horizontal lines are either extended or contracted;

the deformations of lines are not depend on their positions along the width of the cross-
section, i.e. the stress distribution functions along the cross-sectional width are uniform;
the material behaviour is linear and elastic, satisfying Hooke law, having the same response

in tension and compression.

Fig. 4.19
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Introduction to Mechanics of Materials: Part Il Bending of Straight Beams

Since the vertical sections are perpendicular to the circles after deformation, we can then conclude that
Yxy =Vez =0 and 7,, =1,, = 0. Subsequently, due to the uniform deformations along the cross-
sectional width, we get 0, = 0, = 0 and Ty, = 0. Then, at any point of a member in pure bending,
only the normal stress component Ox is exerted. Therefore at any point of a member in pure bending,
we have a uniaxial stress state. Recalling that, for M = Fd > 0, lines BD and B’D’ decrease and increase
in length, we note that the normal strain €y and the corresponding normal stress g, are negative in the

upper portion of the member (compression) and positive in the lower portion (tension), see Fig. 4.19.

Fig. 4.20
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From the above it follows that there must exist a neutral line (N.L.) with zero values of 0y and &,. This
neutral line represents the neutral surface (N.S) due to the uniform deformations along the cross-sectional
width. The neutral surface intersects the plane of symmetry along the circular arc of GH, see Fig. 4.20(a),
and intersects the transverse section along the straight line known as the neutral axis (N.A.), see
Fig 4.20(b).

Denoting the radius of the neutral arc GH by p, 0 becomes the central angle corresponding to GH.
Observing that the initial length L of the undeformed member is equal to the deformed arc GH, we have

L = pb (4.16)

now consider the arc JK located at a distance y from the neutral surface, the length L’ can be expressed

as follows
L'=(p—-y)6 (4.17)
Since the initial length of the arc JK is equal to L, then its deformation is

AL=L—-L=(p—y)0 —pb =—y6b (4.18)

and we can calculate the longitudinal strain &, as follows

AL _ 8 _ ¥
& =TT T (4.19)

The negative sign is due to the fact that we have assumed the bending moment to be positive and thus,
the beam to be concave upward. We can now conclude that the longitudinal strain &, varies linearly
with distance from the neutral surface. It is only natural that the strain €y reaches its absolute maximum

value at the furthest distance from the neutral surface Ymqy, thus we get

_ Ymax

Emax = P) (4.20)

Solving equation (4.20) for p and substituting into equation (4.19) we obtain

Y
& = 7 &max (4.21)

Ymax

This result is only qualitative though, due to the fact that, until now, we have not located the neutral
surface or neutral axis. On the other hand, we can determine the normal stress distribution function along
the vertical axis y so we can multiply equation (4.21) by Young’s modulus E, since we are considering

the linear elastic response, thus

y y
Ee, = — E€max or Oy = —— Opmqx (4.22)

Ymax Ymax
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Fig. 4.21

This result shows that, in the elastic region, the normal stress varies linearly with the distance from the

neutral surface as well, see Fig. 4.21.

But still the location of the neutral surface and the maximum absolute value 0,,,, are unknown!

Therefore we recall equations (4.15) and substitute for o, into the first relation and get

[ordA= [ -0y dd == ydA =0 (4.23)

Ymax

From which it follows that
[ydA =0 (4.24)

The last equation shows that the first moment must be equal zero, or in the sense of statics, that the

neutral axis passes through the centre of the cross-section.

Now we can recall the third equation in (4.15), after substituting for o, we obtain
f_yo-di=f_y(_ﬁo-max)d/l=%fy2dA=M(x) (4.25)

The integral [ y? dA represents the moment of inertia, or the second moment of the cross-section with
respect to the neutral axis, that coincides with the z axis. For more details about moments of inertia, see
Appendix A. Denoting the moment of inertia by I, we have

M(x) = Zmex | or Omax = Mx)

Ymax 1

Vmax (4.26)

After substituting for 0,,, we can obtain the formula for normal stress 0, at any distance from the

neutral axis as follows

_ M)

O' =
x I

(4.27)
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Returning to equation (4.26), the ratio ! /Y. depends upon the geometry of the cross-section, thus this

can be any other cross-sectional characteristic which is known as the section modulus S

s =1

Ymax

Substituting for the section modulus S into equation (4.26) we get

_ MX)
Omax = S

Finally we return to the second equation in (4.15) and substitute for 0y, to obtain

[ zo,dA = fz(—yLamax)dA = —Tm (yzdA =0

Ymax

From which it follows that

[yzdA =0

(4.28)

(4.29)

(4.30)

(4.31)

The above equation represents the product of inertia and it must be equal to zero. This means that the

neutral axis (z axis) and y axis are principal axes of inertia, for more details see Appendix A.

The deformation of a member as a result of a bending moment M (x) is usually measured by the curvature

of the neutral surface. From mathematics the curvature is reciprocal to the radius of curvature p, and it

can be derived from equation (4.20) as follows

l _ €max

14 Ymax

max

Recalling Hooke law g,,,, = GT and equation (4.26) we get

1 Omax _ 1 M) _ M)
P Eymax Eymax 1 max El
Fig. 4.22
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Introduction to Mechanics of Materials: Part I Bending of Straight Beams

Secondly, let us consider the effect of the shear force V (x). As we mentioned before, the shear force V (x)
represents the effect of the shearing stresses in the section. Let us consider the transversally loaded
cantilever beam with a vertical plane of symmetry from Fig. 4.15. Fig. 4.22 graphically represents the
distributions of elementary normal and shear forces on any arbitrary section of the cantilever beam. These
elementary forces are equivalent to the bending moment M(x) = Fx and the shear force V(x) = F.
Both systems of forces are equivalent, therefore we can write the equations of equivalence. Three of them
involve the normal force 0,dA only and have already been discussed in the previous subsection, see
equations (4.15). Three more equations involving the shearing forces 7,,,dA and 7,,dA can now be
written. But one of them expresses that the sum of moments about the x axis is equal to zero and it can

be dismissed due to the symmetry with respect of the xy plane. Thus we have

XE =0 or frxy dA = -V (x)
YE =0 or [1,,dA=0 (4.34)
Fig. 4.23
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Fig. 4.24

The first equation above indicates that the shearing stress must exist in the transverse section. The
second equation shows that the average value of the horizontal shearing stress Ty is equal to zero. But
this statement does not mean that the shearing stress Ty, is zero everywhere. Again as one can see, the
determination of the shearing stress is a statically indeterminate problem. The following assumptions

about the distribution of the shearing stress have been formulated by Zhuravsky:

o the direction of shearing stresses are parallel to the shear force;
« the shearing stresses acting on the surface at the distance y, from the neutral surface are

uniform, see Fig. 4.23.

The existence of shearing can be proven by the shear law. Let us build our cantilever beam from two
portions that are clamped together, see Fig. 4.24(a). The cantilever beam is divided into two portions
at the neutral surface GH. After applying a load F each portion will slide with respect to each other,
see Fig. 4.24(b). In contrast, the free end of the solid cantilever beam is smooth after the deformation;
see Fig. 4.24(c). To obtain the same response, i.e. the smooth end for the clamped cantilever beam, we
must insert additional forces between portions to conserve the constant length of both arches GH and
G'H’; see Fig. 4.24(d). This represents the existence of shearing stresses on the neutral surface and the

perpendicular cross-section (along the neutral axis).
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Fig. 4.25

For determining the shearing stress at a distance y, from the neutral surface, we can detach a small
portion C'D'DC with length dx at the distance xx from the free end of the cantilever beam, see Fig.
4.25. The width of the detached portion at the vertical distance y, is denoted by b. Thus we can write

the equilibrium equation in the x direction for the detached portions as follows
YE =0 — [(oy +do,)dA; + [ 0,dA; + 1, bdx = 0 (4.35)

M oo "
The normal stress at point B can be expressed by o, = — % ¥; and its increment at point B’ can be
dM (x) -
I

expressed as do, = — y;, see Fig. 4.25(b), after substituting into equation (4.35) we have

_ f dM (x)

2 idAr = Ty, bdx (4.36)

subsequently we can now get the shearing stress Ty, at the distance y, from the neutral axis

_ dM(x) 1 ,
Ty = =4 ppy ) Yidds (4.37)
or
_ V(x)Q,
Tyy = _T (4.38)
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dM—)Ex), and the first moment of

The shear force is determined by the Zhuravsky theorem, i.e. V(x) =
the face C'D' is calculated by Q, = [ y; dA;. The negative sign in the above equations represents the
opposite orientation of the positive shear force on the face C'D’ to the orientation of the y axis. Thus

satisfying our positive definition of the shear force we can write

Fig. 4.26
V(x)Q. . . . . .
Tyy = (;I)Q (4.39) For the rectangular cross-section of the beam with the dimensions bxh, see Fig.
4.26, we have
E b hZ 2
Q. = [yidAy = 2 y; bdy; =2 (== y}) (4.40)

knowing that [, = %bh3 we can finally formulate the shearing stress distribution function

3V(x) 291\
w =32 (- () (441

34
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Fig. 4.27

This equation represents a parabolic distribution of the shearing stresses along the vertical axis with

zero values at the top and bottom. The maximum value of the shearing stress, i.e.7,,,, = %%’ is at

the neutral surface, see Fig. 4.26.

If we apply equations (4.39) for determining the distribution of shearing stresses 7, along the vertical
axis y of W-beams (wide flange beam) or S-beams (standard flange beams), we will get the distribution
function presented in Fig. 4.27. The discontinuity of the distribution function is caused by the jump in

width at the connection of the flange to the web.

Fig. 4.28 continued

For determining the shearing stress T,, in the flange of W-beams or S-beams we need to detach the
portion C'D'E'F’, see Fig. 4.28(a). Again we can apply the above mentioned approach and we can write

the equilibrium equation for the detached portion, in the X direction, as follows

YE =0 — (o, +do,)dA; + [ 0,dA; — T, tdx = 0 (4.42)
Solving this equation we have

—J

dM
,(x) y1dA; = Ty, tdx (4.43)

z
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or

_ V(x)Q,

Typ = = (4.44)
Then substituting for the first moment of the area ¢.p'E'F- Q, = [ y; dA; = z;t h12+t we get
_ V&t
- 57 4
e 21, (4.45)

Fig. 4.28 end

This equation shows that the shearing stress Ty, is linearly dependent on the width of the detached
portion, namely on Zj, see Fig. 4.28(b).

4.7 Design of Straight Prismatic Beams

The design of straight prismatic beams is usually controlled by the maximum absolute value of the
bending moment M,,,, in the beam. This value can be found from the bending moment diagram. The
point with the absolute maximum value of bending moment M,,,, is known as the critical point of a
beam. At the critical point the maximum normal stress can be calculated as follows

— Mmax — Mimax

Omax = S or Omax = I Vmax

safe design requires that the strength condition a,,,, < 0y, be satisfied. From this condition we can

determine the minimum section modulus

— Mmax

S . =
ek oAl (4.46)
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Fig. 4.29

Then we need to check our design in respect to the absolute maximum value of the shear force V,,,
obtained from the shear diagram. The reason is simple; the maximum absolute value of the normal
stress is either on the top or the bottom of the section considered and the absolute value of the shearing
stress is on the neutral axis, see Fig. 4.29. Therefore the shear strength condition 7,,,, < T4y must be
satisfied, where

Vinax Q
Tmax = mZJ;Z - < Ty (4.47)
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Fig. 4.30

The last step is more complicated, mainly for W-beams. If we draw the distribution functions of the
normal and shearing stresses, see Fig. 4.30, the critical point will be at the connection between the flange
and the web. At point CR, combined loading exists with relatively high values of both stresses. Therefore

we need to discuss the strength criterion of combined loading.

Oy Oy A.cosf
.
— Txy 124 Ty i/

Ty 4—} ~|»(2 ‘—b Ty Oy HJ

A
TX_\' -

0
>
7 Txy Txy ;
l y l W o\ A.sind
| ¥ ‘ g

Fig. 4.31 Fig. 3.32 Fig. 3.33

For deriving the strength criterion of combined loading, we first have to analyse the stress transformation.
For simplicity let us consider a plane stress state at any arbitrary point 0 defined by two normal stresses
Oy, 0y and one shearing component Tyy, see Fig. 4.31. The plane y is characterised by stress components
and the plane v is characterised by stress components 0y, T, . These planes correspond to the x,y
coordinate system. Now our task is to determine the normal and shearing stresses at any arbitrary plane
1, see Fig. 4.32. Making a section by plane 7 we get the triangle from the unit square, see Fig. 4.33. This
triangle must also be in equilibrium and by inserting the normal stress o and the shearing stress 7 into

the plane # we can write the equilibrium equations

YE =0 0A — g, cos@ Acos 8 — g, sinfA sin 6 — 1,,, sin A cos 6 —

—Tyy COSO Asingd =0

YE =0 TA — 0, sinf Acos6 + o), cos 6 Asin 6 + 1, cos Acos 6 — (4.48)

—Tyy SiINO Asin€ =0
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After some mathematical manipulation we obtain

o = 0, cos* 6 + g, sin” 6 + 27, cos O sin §

T = 0, cos@ sinf — g, cos @ sin 6 + 7, sin® 6 — T, cos? 6

Applying the following relations

1+cos 26 . 1—cos 260
cos? =———= | sin? § = ——— ,
2 2
we have
__oxtoy Ox—0y ]
o=——""+1— cos 260 + 1, sin 26

O,x—0 .
T = ——%sin 20 — 1,, cos 26
2 Yy

(4.48)

2cosfsin@ = sin 260

(4.50)

These equations show that the stress transformation depends upon the angle 6 and are independent to

the material properties. Let us modify equations (4.50) to give

Ox+o Ox—0 .
—% = %COSZQ + 7,y Sin 26

Ox—0 .
T =—-"—2sin 260 —1,, cos 20
2 Yy

Squaring both equations and then adding them together we get

2 2
0’x+0'y 2 _ (9x—0y 2
(0 — ) +17° = — t Tyy

Fig. 4.34
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The above equation represents a circle defined by its centre at [%,0] and with a radius of
R= (@)2 +1,,2 in the space of o, 7. This circle is the well-known Mohr’s circle. The graphical
representation of Mohr’s circle is presented in Fig. 4.34. The physical meaning of Mohr’s circle is that

each point of this circle represents a plane characterised by the stresses o, 7. Denoting the average stress
Ox+0y

as Ogpe = we get

(0 — 040 )% + 7% = R? (4.53)
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The Mobhr circle has four important points denoted by B, C, and D, see Fig. 4.35. Point A represents the
plane which has the maximum normal stress o0,,,, = dy; ; Point B represents the plane with minimum
normal stress Opmin = Op and points C, D represent the planes with maximum shearing stress Timnax .

Mathematically we have

Omax = 04 = Ogype + R
Omin = 0p = Ogpe — R (4.54)
Tmax = R

s
T T ABOVE

T T
- BELOW

COUNTERCLOCKWISE

Tu

Fig. 4.36

The plane A contains the normal stress 04 and zero shearing stress. This plane is known as the principal
plane and the corresponding normal stress as the principal stress. Plane B is also a principal plane with
a principal stress 0. Planes C, D are known as the planes of maximum shearing stresses. The position of
plane y in Mohr’s circle depends on the value of the corresponding normal stress o and the orientation
of the shearing stress 7. If the shearing stress tends to rotate the element in a clockwise manner, the
point on Mohr’s circle corresponding to that face is located above the o axis. If the shearing stress tends
to rotate the element counterclockwise, the point on Mohr’s circle corresponding to that face is located
below the o axis, see Fig. 4.36. In our case (Fig. 3.32) the shearing stress T, in the plane y tends to
rotate the element counterclockwise, so the plane is located below the o axis, see Fig. 4.37. Pointing out
the difference between the unit square and Mohr’s circle, the angle 6 in the unit square is doubled in
Mohr’s circle. Therefore we have to rotate the plane y by 26 in the same direction to get plane 7, see
Fig. 4.37. The principal planes A, B can be found graphically in the unit square by rotating the plane y
about the principal angle @p, see Fig. 4.38. The principal angle can be determined from the condition
that there is no shearing stress on the principal plane. Thus we get
2Tyy

tan 20p = —— or 20p = tan™! (ﬂ) (4.55)

Ox—0y Ox—0y
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Fig. 4.38
The experimental observations show that the failure of brittle materials depends strongly on the maximum
normal stress, i.e. they fail suddenly without any yielding prior. Therefore it is natural that we compare

the ultimate normal stress caused by simple uniaxial loading 0y to the maximum normal stress for a

given spatial stress state, i.e. with the maximum principal stress 0y
log| < oy (4.56)

This equation is known as Coulomb’ criterion (Ch. Coulomb 1736-1806).
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Fig. 4.39

For ductile materials this criterion doesn’'t apply therefore we must compare other quantities. Usually we
compare the strain energies which is the energy accumulated in the body during the deformation process
with no dissipation (no internal sources of energy). Firstly, we derive the strain energy for a member BC
in tension, see Fig. 4.39. Since there is no dissipation during the deformation process, the strain energy

U is equal to the work done by the external forces W

U=W = [Fdx (4.57)
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Dividing equation (4.57) by the volume of the member V = AL we get the strain energy density

_ U (Edx_ - g o T 0
u=-o= AL—faxdsx—fEexdex—Ez— r== (4.58)
The total strain energy density for multiaxial loading is equal to the sum of individual strain energy

densities for each load. Then we can conclude that

u= OxEx + Uy;y + 078y + Txy Vxy + Txz Vxz + TyzVyz

2 2 2 2 2 (4.59)

For the plane stress state we analogically get

_ Ox&x , 9y&y | TxyVxy
2 + 2 + 2 (4.60)

Substituting the equations of elasticity (2.10) into equation (4.60) results in
u=-(02 + 02 - 2vo,0 )+ﬁ
T E\VX Yy x=y 2G (4.61)
and in the terms of the principal stresses we obtain

1
u = E(aj + 05 — 2vo,0p) (4.62)

From the theory of elasticity, the total strain energy density can be decomposed additively in the
volumetric and the distortion parts. The volumetric part uy, causes a volumetric change in the body and

the distortion part up causes the body’s change in shape. Then

u=uy +up (4.63)

Let us introduce the average value of principal stresses assuming the spatial stress state

op+toptoc
3

o =

and define that

op=0+a0) , op =0 +o0p , Oc =0+ o, (4.64)
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Fig. 4.40

we can then make this decomposition graphically, see Fig. 4.40. From the drawing, it is clear that the stress
0 causes the volumetric change and the stresses 04, Op, 0 cause the shape of the body to change. For

the plane stress state 0¢ = 0 and knowing that up =U — Uy we can derive the distortion energy density
up = — (62 — 0,05 + 02)
D = g \04A A0B B (4.65)

Considering the simple tensile test for which g4 = oy and 0 = 0 applies at yield, then the distortion
energy (up)y = o /6G. The maximum distortion energy (Mises criterion), for plane stress, indicates
that a given state of stress is safe as long as up < (up)y. Substituting the strain energy density from

equation (4.65) we then get

2 2 2
04 — 040p + Op < Oy (466)

Considering a special case of the plane stress state defined by o, # 0,0, = 0,7,, # 0 we can derive

the corresponding principal stresses as follows

2 2

Then substituting the above equations into equation (4.66), we obtain

Joi + 312, <oy (4.68)

Now we can apply Mises criterion for checking the connection between the flange and the web, see

Fig. 4.29 and assuming a factor of safety F. S we get the allowable stress for a given material

gy

Oun = —o
All = ps. (4.69)

and finally we have

0f — 0,05 + 05 < 0¥ or  \J ol — o405 +0f <oy, (4.70)
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If our design satisfies Mises criterion (4.70) at the flange-web connection, then our design is considered

to be safe.

4.8 Examples, Solved and Unsolved Problems

Problem 4.1

Fig. 4.41
A beam with a circular cross-section acted on by a force F and bending moment M=FL seen in the Fig.
4.41. Determine, and draw along its length, the internal moment M and transversal force V. Draw the
stress distribution over the cross-section at the location of maximum bending moment and determine

the von Mises stress at point 1, 2, 3, 4.

Solution

Fig. 4.42

X e<0,L>

The shaft consist of one portion (see Fig. 4.42), which has a uniform cross-section area, constant internal

bending moment, and constant transversal load. See the free body diagram in Fig. 4.43, from which we find
> M, =0: M(x) +M+Fx=0 = M(x)=-M-Fx
M(x)=-FL-Fx=-F (L+x) (2)
D E, =0:N(x) =0
D E,=0:V(x)-F =0 = V(x)=F

(b)

Download free eBooks at bookboon.com



Introduction to Mechanics of Materials: Part I Bending of Straight Beams

Fig. 3.43

The maximum internal moment in the beam is M = 2FL at x = L and the transverse load is contant V =
F along the length of the beam in Fig. 4.44.

Moment of inertia about the neutral axis is

nD*
64

Maximum bending stress. The maximum bending stress occurs at the point farthest away from the neutral

axis. This is at the top (point 2) and bottom (point 4) of the beam ¢ = D/2. Thus,

(]
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max

—~| =
—| g
Sl v

Fig. 4.44

s, is the maximum absolute value from Eq. (a), which is located at x = L and we get

oDt 2 1 D
64

2FL D 64FL 20.37%

The maximum shear stress occurs at the neutral axis for a circular cross-section which is

VQ 4Q 4 Q 16 Q
™It 3A 37aD* 3nD?
4

Graphically, the bending stress and shearing stress are shown in Fig. 4.45. Von Mises criterion says

f 2 2
GMises Y +3T Gal]'

(©)

Fig. 4.45

The Mises stress at point 1 and 3 in Fig. 4.45 is the same, because from the diagram in the Fig. the

bending stress is s = 0 and the shearing stress is at its maximum t = t__, which is

Download free eBooks at bookboon.com



16 Q ° 16 Q
Gy 0° 3 2% 32X
Mises \/ 3z D? \/_371 D?

The Mises stress at point 2 and 4 in Fig. 4.45 is the same because, from the diagram in the figure, the

bending moment is at its maximum ¢ = 6___and the shearing stress is

T = 0, which is

30

G4FL © 52 GAFL
Mises P D3 T D3

Problem 4.2

Fig. 4.46

For the beam with a load shown in Fig. 4.46, determine (a) the equation defining the transversal load and
bending moment at any point (b) draw the shear and bending moment diagram (c) locate the maximum
bending moment and maximum transversal load (d) determine the von Mises stress at point 1, 2, 3, 4

for a rectangular cross-section area

Solution

The shaft consists of two portions, AB and AC (see Fig. 4.47), and each portion has uniform cross-section

and constant external forces.

Reactions

Considering the free body diagram of the entire beam (Fig. 4.47), we write
D> E =0 -R,, =0 = R, =0

L L 4
>'M,, =0: RB3L—W3L37+WLE -0 = R, - 2wl

D> E,=0:R,+R;-4wL=0 = R, =4wL—RB=§wL
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Fig. 4.47

Solution of portion AC

Bending of Straight Beams

Passing a section though the beam between A and C and using the free body diagram shown in Fig.

4.48, we find

X

=0
2

ZMiQ =0: M,(x;) + wx,

2
W X;

M, (x)) =~

ZEy =0: -Vi(x;) —wx,=0

Vi(x) =-wx,
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The diagram of transversal load and bending moment is shown in Fig. 4.50.

X, € <0,L>

Fig. 4.48

Xy € <O,3L>

Fig. 4.49

Fig. 4.50

Fig. 4.51

51
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Fig. 4.52

Solution of portion AB

Now passing a section between A and B, we have (see Fig. 4.49)

2
WXy

D M =0: =M (x,)+R;— 0

2
WX 4 WX
M (x,;) =Rg - 2H = gWLXII - .

ZFiy =0: Vy(xy) — wxy+R; =0
4
Vixp) =wx,;— Ry =wx; - EWL

Graphically the transversal load and bending moment is shown in Fig. 4.50. We have two points with
the local maximum values. At point I we have the maximum bending moment while the transversal
load is zero. At point II we have a nonzero bending moment and the maximum transversal load. We

will control the rectangular cross-section area at both points.

Von Mises stress at point I in Fig. 4.50.

At this location we only have a nonzero maximum value of the bending moment. At this point we have

pure bending. The maximum value of stress is at points 2 and 4 (see Fig. 4.51), which are

|Mmax |Mmax |Mmax| h 6|Mmax
Gmax ymax A 2
12
8
] 6|Mmax 6‘9 wL 16 wl2 .
X ph? bh? 3 bh?
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Von Mises stress at point 1I in Fig. 4.50.

At this location, we have a nonzero value of the bending moment and the maximum transversal load.

The maximum bending stress is at points 2 and 4 (see Fig. 4.52) , which are

M M| M| b 6M|
s ™ ibh32 bh?
12
M 6wL

c ;
™ bh®>  bh’

Where the shearing stress is zero. The Von Mises stress at points 2 and 4 are

2
GMises ¢02+3T2 \/ 6[)‘;1,5 +3 02

6wL
GMises bhz Gall .
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At points 1 and 3, the bending stress is zero and we only have the maximum shearing stress, which is

h) h bh’
:A_: b)(— X—=—
o=4 ( 2) 48
bh? 5
Mo g 3v 33" sw

The Von Mises stress at points 1 and 3 are

2
O Mises \152 +3T2 \/ 0 ? +3 g\l};’—}[;

GMises ﬁ % é W_L Gall .

2 bh

Problem 4.3

Fig. 4.53

For the beam with a load shown in Fig. 4.53, determine (a) the equation defining the transverse load and
bending moment at any point (b) draw the shear and bending moment diagram (c) locate the maximum

bending moment and maximum transverse load. (d) design the cross-section area at point g, b and c.

Solution

The shaft consists of three portions AC, CB, and BD (see Fig. 4.53), each with a uniform cross-section

and constant external forces.
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Reactions

Considering the free body diagram of the entire beam (Fig. 4.54), we write
ZFix = O : RAx = 0

> M, =0: 2FL-R;2L+F3L =0 = R, ~JF
2

ZFiy:O: R,+R;-2F-F=0 = R,=3F-R; =3F-

Fig. 4.54

X, € <O,L>

Fig. 4.55

Solution of part AC.

At position x; we assign the internal forces and moment to be positive as shown in Fig. 4.55. We find

the internal forces and bending moment from the following equilibrium equations:

> M,=0: M(x;) - R, x,=0
F
M, (x)) =R, x, :EXI

D E,=0: —Vi(x,) +R, =0
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Vi(x))=R, :5

ZEX :O: NI(XI) +RAX :O NI(XI):O

Solution of part CB.

In the same way as the solution of part AC, we write the equilibrium equations for part CB (Fig. 4.56),

which are
zMiQ =0: MII(XH) - RA Xy +2F( Xn _L):O
3
M, (x;) =R, xy _2F(XH —L) = _EFXH +2FL
ZFiy =0: -V,(xy) +R,-2F =0
F 3
V. (x,)=R, -2F=—-2F=-=F
1(Xy) A > 5

ZFix =0: N,(x,) +R,, =0 Ny (x,)=0

Solution of part BD.

X, € <L, 2L>

Fig. 4.56

Xy € <0, L>
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Fig. 4.57

Part BD is shown in Fig. 4.57 with the internal forces (transversal V and normal N force) and internal
bending moment located at point Q. We solve these internal forces and moment from the following

equation
> M =0: My (xy) + Fxpy =0
M (X)) =-F xy
D E, =0: Vy(xy) —F =0

Vi (xy)=F
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ZFix =01 =Ny (Xy) =0 Ny (x,)=0

Fig. 4.58
Graphically the transversal load and bending moment for all parts can be seen in Fig. 4.58. From this

Fig. 4.58, the maximum transversal load and bending moment can be found at x = 2L. Maximum values

at this location (point I) are

Mmax = Mll (XII:2L) = _F L

Vi = Vi (xy=2L) = _%F

max

Normal Stress on the Transverse Plane. (see Fig. 4.59)

Fig. 4.59

For the cross-sectional area in Fig. 4.59 we have I =428 t* from Appendix — Example A.06. We determine

the stresses G, G, and G,
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at point a:

M| M| FL . 5 FL
s I T g0 48 ¢

o

and at point b:

y, 5 FL3t 3 FL

c, - ———

“y o 4281 5t 428 ¢

and at point c:

o Yo 3 FLO

©ty 428 £ 5t

Shearing Stress on the Transverse Plane.

Atpointa: Q=01 =0

At point b: Q = Ay, = (6t x2t) x 4t = 48t

3
:|V|Q_5Fx48t3_ 9 F

T = =
* I 2tx428t" 107 t2

At point c:

O=A47, + 4y, =(6tx2)x 4t +(2t><3t)><%t =57t

3 3
. _|V|Q_§FX57t B 171 E
ot 2tx428tt 1712 ¢

g = Ou

Fig. 4.60

Principal stress at Point a. The stress state at point a consists of the normal stress 6, and the shearing

stress T, = 0. Drawing Mohr’s circle (Fig. 4.60) we find
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5 FL
csmax Ga _3 csall
428 t

b=
Fage
&
q

Fig. 4.61

Principal stress at Point b. The stress state at point b consists of the normal stress s, and the shearing

stress t,. We draw Mohr’s circle (Fig. 4.61) and find
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2

Gmax
2428 ¢

1 3 FL 1 3 FL ° 9 F°
2428 ¢} 107 t2 o

(BN
A i B 5
N
Te

Op = T,
[+ »|

Fig. 4.62

Principal stress at Point c. The stress state at point ¢ consists of the normal stress 6_ = 0 and shearing

stress 7. Drawing Mohr’s circle (Fig. 4.62) we find

171 F
ma ¢ 1712 ¢

G

Problem 4.4

Fig. 4.63

For the loaded beam in Fig. 4.63, determine (a) the equation defining the transversal load and bending
moment at any point, (b) the location of the maximum bending moment and maximum transversal load
(c) draw the shear and bending moment diagram and design, for the given cross-section area, using von

Mises criterion. (d) calculate the principal stresses at point a, b and c.

Solution
Reactions

Considering the free body diagram (Fig. 4.64), we write

ZFiXZO: RBX :0
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ZMiB=O:w£(L+£j—RAL—M=0 = R, =0.542wL
2 4

SF, =0: _W7L+RA+RB=0 = RAszL—RB =— 0.042wL

Fig. 4.64

x, €(0,L/2)

Fig. 4.65
(a) the equation defining the transversal load and bending moment at any point

We must consider the solution of two parts (part AB and BC). For both parts we find the bending moment

and transversal load. The normal load is equal to zero for all parts because we don’t have an axial load.

Solution of part AB in the Fig. 4.65.

X
D M, =0: M(x,) + wa?I =0

2
W X
M, (x,)=- I

ZFiy =0: -Vi(x;) ~wx;, =0
Vix)) =-wx,
zFix =0: Ny(x))=0

X, € <0, L>
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Fig. 4.66
Solution of part BC in the Fig. 4.66.
D M =0: —My(x,) ~M+ R x,=0

w2

M, (x;)=—M+R;x, =- -0.042wLx

zFiy =0: Vy(xy) +R; =0
V,(x,;)=—R;=0.042wL

ZFix =0: Ny(x4)=0
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Fig. 4.67
(b) location of maximum bending moment and maximum transversal load
Graphically, the transversal load and bending moment can be seen in Fig. 4.67. From the graphical

solution, the position of maximum bending moment and transversal load is at the same point, point I

(or point B) at

L
2

X =

where the maximum value of bending moment and transversal load is

M, =M, (x,=L/2) =-0.125wL’
V. . =V,(x,=L/2)=-0.5wL

(d) Design the cross-section area at point a, b and c.

Fig. 4.68
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Normal stress on Transverse Plane. (see Fig. 4.68)

For cross-section area in the Fig. 4.68 we have I = 230.9t* and y_=4.6t from the Appendix — Example

A.05. Determining the stresses 6, 6, and G . we write for point a:

M M 125 wi? 5
Ga | max | max ymax 0%46t 25 10 ’ W3
s L 230.9t t
point b:
2 2
o, Yo 25 103 WE 1AL S5 oWl
Y. t° 4.6t t
point c:
2
o, o 251000
v £ 4.6t

Shearing stress on the Transverse Plane.

Atpointa: Q=071 =0
At point b:

Q= Ay, =(8tx2t)x2.4t =38.4t

V 3
_Vlo _ O.SWL><38.4:t =0.021W_ZL
(1, 4tx230.9t t

7y

At point c:

0=A4,y, =(4.6tx4t)x 2.3t =42.328

VIO 0.5wLx42.32¢° wL
7, = = —=0.023—
t1,  4tx230.9t t
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Ty —» «— T,

Principal stress at Point a. The stress state at point a consists of the normal stress 6, and the shearing

stress ¢, = 0. drawing Mohr’s circle (Fig. 4.69) we find

2
6. o 25 10°YF

max a
t

G
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0 C

| X

m,/ 2

T

Fig. 4.70

Principal stress at Point b. The stress state of point b consists of the normal stress o, and shearing stress

7,. Drawing Mohr’s circle (Fig. 4.70) we find

2 2 2
25 10°wl? | 25 10° wi? ~ L2
Oppe [ 22— 0.021=
2t 2t t
Gmax Gall
—Te
0
T
Te
A o
Te
O = T¢
Fig. 4.71

Principal stress at Point c. The stress state at point ¢ consists of the normal stress 6_ = 0 and shearing

stress T. Drawing Mohr's circle (Fig. 4.71) we find

max C

. R 003 o,
t
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Problem 4.5

Fig. 4.72
For the loaded beam in Fig. 4.72 determine (a) the equation defining the transversal, normal (axial) load,
and bending moment at any point, (b) location of maximum bending moment, maximum transversal
load, and maximum normal load (c) draw the normal and transversal load and bending moment diagram

and design for the given cross-section area in the critical location using von Mises criterion.

Solution

Fig. 4.73

X, € <0,L>

(a) the equation defining the transversal and normal (axial) load and bending moment at any point
We have a beam with a free end. From the free end, we have constant cross-section area, constant bending

moment, transversal load, and normal load. Thus we do not need to find the reactions at the support.

The division into the parts is shown in the Fig. 4.73.
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Solution of the first part in Fig. 4.74.

Fig. 4.74

X, € <0, 2L>

At location x, we assign the positive orientation of the normal force N, transversal force V, and bending

moment M. We find these forces and moments from the following equilibrium equations:

X

ZMiQ =0: -M,(x,) — wxl7I =0

2
W X
M, (x;)=— l

ZFiy:O: Vi(x,)) —wx, =0
Vi(x) =wx,

zFix =0: Ni(x;)=0
v
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Solution of the second part in Fig. 4.75.

Fig. 4.75

The second part starts from the 90° bend in the beam see Fig. 4.73. For solution we use the positive

normal force N, transversal force V, and bending moment M, see Fig. 4.75. Equilibrium equations

1
at point Q are

L
D M, =0: —M(x,) —wLE= 0

wl?
M, (xy) =—

ZFiy:O: - Vy(xy) =0
Vi(x;)=0
ZFix:O: —Ny(x,;) —wL=0

Ny (xy)=-wL
(b) location of maximum bending moment, maximum transversal load and maximum normal load

The graphical diagram of the normal load, transversal load, and bending moment for both parts can be

seen in Fig. 4.76. the design has its maximum values in point I at location

x, =L

with values

wl?
2

Mmax = MI(XI:L) ==

V. . =V(x,=L)=wL

N,(x,=L)=0
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and second position (because here the maximum normal load occurs) is in the same point I at location
Xy =0

with values

wl?
2

M, =M (x,=0)=—

Vi (x,=0)=0

N = Ny (x,=0) = -wL

max

Fig. 4.76

For the given cross-section area we design for both positions.

Design of rectangular cross-section at point I, when x, = L.

The maximum bending stress is

|Mmax |Mmax| |Mmax h 6|Mmax
Gmax ymax ~ 2
12
wlL?
3 2| 3wl?
s w

™ 2b° 4v°

The shearing stress is (from Problem 4.2)

. Ve _3v _3wL_3wL
"™ ¢I. 2bh 2bh 41b*°
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and the normal stress is

GMMO
A bh

Fig. 4.77

The bending, normal and shearing stress diagram is shown in Fig. 4.77. Von Mises stress at point 2 and

4, when the bending stress is nonzero, is

[ o 3wl
2 2
GMises Y +3 0 6all ’

4p°

and at point 1 and 3, when the shearing stress is nonzero, we get

GMises N 02 +3T2 \/§ T \/gi \:)/_ZLI Gall‘

Design of rectangular cross-section at point I, when x,, = 0.

The maximum bending stress is

|Mmax |Mmax |Mmax h 6|Mmax
Gmax max 1 A bh2
S 12 7bh3 2
12
3 wl’
2 3wl?
o

e 2b’ 4b°
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and the normal stress is

N[N wL

" A bh bh’

Fig. 4.78

The bending, normal and shearing stress diagram is in Fig. 4.78. The Von Mises stress at point 2 is

2 2
GMises \/(Gmax GN) +3 O cmax GN

3wl?  wL
3 Gan
4b bh

6Mises ‘

Note that in this point we have a different sign for the bending and normal stress.

The Von Mises stress at point 4 is

2 2
GMises \/(Gmax cSN) +3 0 |Gmax GN

s 3wl wL
Mises 4b3 bh

O

Note that, in this point we have the same sign as the bending and normal stress.

At point 1 and 3, all stresses are zero and we get

Gy NOH3 07 0.
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Problem 4.6

Fig. 4.79
For the curved beam in Fig. 4.79 determine: (a) the equation defining the transversal and normal (axial)
load and bending moment at any point, (b) location of the maximum bending moment, maximum
transverse load and maximum normal load (c) draw the normal load, transversal load, and bending

moment diagram and check a given cross-section area in critical points using von Mises criterion.

Solution

Fig. 4.80

<O, n/2>

Fig. 4.81

(a) the equation defining the transversal load, normal (axial) load and bending moment at any point
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Starting from the free end at point B we can define, in cylindrical coordinates, the angle ¢. The bending

moment in position j at point Q, seen in Fig 4.81 and Fig. 4.83, we find the moment equilibrium at

point Q which is

D> M, =0: -M(p) + M~ FR singp—2FR (1-cosp) =0

M(¢) =2FR cos¢p— FR sing

We find the normal and transversal loads at point Q from the decomposition of all forces to the new

coordinate system Xy’ in Fig. 4.82. We write the equilibrium equations for the force in the x’ direction

ZFix. =0: —N(¢)—Fsing+2Fcosp =0

from which we have a normal force

N(¢@) =—-Fsin@+ 2Fcos ¢.

The equilibrium equation in the y’” direction is

ZFiy, =0: V(¢p) —Fcosp—2Fsingp =0
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from which we have a transversal load

V(p)=Fcosp+2Fsing .

Fig. 4.82

Fig. 4.83

(b) location of the maximum bending moment, maximum transversal load, maximum normal load, and

(c) draw the normal and transversal load and bending moment diagram

The graphical presentations of the results are shown in Fig. 4.84. From these diagrams we have two

locations which have maximum values (point I and II).

at location @ = 0 (point I) we have

M__ =M(p=0)=2FR
N,,. = N(p=0)=2F

V(p=0)=F
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at location ¢ = m/2 (point II) we have
M( w/2) FR
N( w2 F
V, V( w2) 2F

max

(c) check a given cross-section area in critical points using von Mises criterion

Fig. 4.84

Design of cross-section area in point I.
The maximum bending stress is

G |Mmax| |Mmax |Mmax| 2 32 |Mmax

™S I, "™ @b 2 aD’
64
32| FR| 32FR
G max 3 3
D nD

The shearing stress is (see, Timoshenko et al)

V[0 4v 4 2F 32 F
max tIZ 3A 3 TCD2 3 TCDZ,
4

and the normal stress is
M IN| 4| F| 4F
A oD @D mD*’

4
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A diagram of the bending, normal and shearing stress can be seen in Fig. 4.85.

Von Mises stress at point 2 is

2 2
GMises \/(Gmax GN) +3 O |Gmax GN

s 64FR  8F
Mises TCD3 TI:DZ

Gan

Note that, in this point we have a different sign for the bending and normal stress.

Von Mises stress at point 4 is

2 2
cSMises \/(Gmax cSN) +3 0 |Gmax cSN

64FR  8F
D’  aD?

GMises Gall

Fig. 4.85

Note that, in this point we have the same sign for the bending and normal stress.

At point 1 and 3 from Fig. 4.85 we get

2 2

[3 a2 8F 16 F
cSMises GIZ\I +3T12nax TI:D2 +3 ?Tch cSall'

Design of cross-section area in point IL.

The maximum bending stress is

|I 1max |I Imax |I 1max D 32|I Imax
G R
e S I "™ aD* 2 D’
64
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32| FR| 32FR
" gD’ nD’

The shearing stress is (see, Timoshenko et al)

Mo 4v 42F 32 F

™I, 3A 3amD’ 3 aD*’
4

and the normal stress is
M IN| 4| F| 4F
N A aD* aD? aD*’

4

Ther bending, normal and shearing stress diagram can be seen in Fig. 4.86.

www.job.oticon.dk
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The Von Mises stress at point 2 is

Fig. 4.86

2 2
cSMises \/(Gmax cSN) +3 0 |Gmax GN

- 32FR  4F
Misses TED3 TI:D 2

Can

Note that, in this point, we have a different sign for the bending and normal stress.

The Von Mises stress at point 4 is

2 2
GMiseS \/(Gmax GN) +3 O |Gmax GN

s 32FR  4F
Mises 'ﬂ:D 3 T[D2

O

Note that, In this point, we have the same sign for the bending and normal stress.

At point 1 and 3 from Fig. 4.86 we get

2 2

[2 2 4F 32 F
csMises GIZ\I +3Tr2nax TCD2 +3 ?TEDZ Gall'
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Problem 4.7

Fig. 4.87

For the beam in Fig. 4.87 determine the maximum values of bending moment, torque, and transversal
load. Draw the diagram of bending moment, torque and transversal load and check the circular cross-
section for strength using Mises criterion. The length L, a, diameter D, force F, and allowable stress o,

are given.

Solution

Fig. 4.88
The equivalent force system is determined by the torque T and the transversal load F shown in Fig. 4.88.
After this transformation we have a cantilever beam, which has a T = Fa and force F at its free end, see

Fig. 4.89 (last view).

This problem is a combination of torsion and bending. The solution is to divide the problem into two

parts, the torsion solution and bending solution. Then we sum the results from both parts.
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Fig. 4.89

Solution for torsion (see chapter 3 Torsion)

We solve for the part with length x, see Fig. 4.90, where, in the cutting plane area, we assign the positive
torque moment T(x). The value of T(x) is found from the equilibrium equation of moment about the

x axis, which is
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X e<0,L>

Fig. 4.90

> M, =0: T(x) -T=0
T(x)=T=Fa

The torque diagram along the length of the beam can be seen in Fig. 4.93.

X € <0, L>
Fig. 4.91
Solution for bending.

For the part of the beam at length x and with internal forces and moment at point Q, see Fig. 4.91. We

find the bending moment from the equilibrium equation
> M,=0: -M(x) - Fx=0

M(x) =- F x,

transversal load
> E,=0: V(x) -F=0

V(x)=F,

and normal (axial) load

ZEX =0: N(x)=0.
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The bending moment and transversal load diagrams are shown in Fig. 4.92.

Fig. 4.92

Check of the circular cross-section.

The maximum bending stress is

‘Mmax ‘Mmax ‘Mmax D 32 ‘Mmax
o - - =
max S [Z ymax L])A‘ 2 TED3
64
32| FL| 32FL

- D’ D’

The shearing stress is (see, Timoshenko et al)

Vo 4v 4 F_ 16 F

"4l 3A 3aD’ 3 aD’
4

b
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and the maximum shearing stress in torsion is (from chapter 3)

M o o
fmaxyoomx oy o gD* 2
32
16T
T max 7ID3

Fig. 4.94

The bending, normal, and shearing stress diagrams are shown in Fig. 4.94.
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The Von Mises stress at point 2 and 4 is

, 2
GMises +3 Tmax

32FL ° _ 16T °
+3
D’ D’

Q

csMiscs all

Fig. 4.95

At point 1, the shearing stress from the transversal load and torque are in the same directions (see
Fig. 4.95), and we get

2 2 2 2
GMises \/G +3 Tmax TTmax \/O +3 Tmax TTmax

GMises \/§|Tmax TT max |

16 F 16T
Gy p 31—
Mises \/_‘ 3 aD* D’

O

At point 3 the shearing stress from the transversal load and torque are in the opposite directions (see
Fig. 4.95), we get

2 2 2 2
GMises \/G +3 Tmax TT max \/O +3 Tmax TT max

GMises N 3 |Tmax TT max |

16 F 16T
(¢}
Mises \/_‘ 3 nDz Tl: 3

G
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Unsolved problems

Fig. 4.96 Fig. 4.97

Problem 4.8

For the beam in Fig. 4.96, Determine (a) the equation of the transversal and bending curve, (b) the
absolute maximum value of the bending moment and transversal load in the beam, (c) the Von Mises
stress for the rectangular cross-section area at point 1, 2, 3 and 4 at the position of the maximum bending

moment. Assume that L = 500 mm, w = 12 kN/m, b = 20 mm and h = 30 mm.

[R,,=0N, R, =3000 N, R, =3000 N, M_ =375Nm, V__=3000N,
=0 =0 MPa, o =0 =125 MPa]

0-Mises 1 Mises 3 Mises 2 Mises 4
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,J JJE ,_ 7\‘ = H “;J 1 ENCGall gi MJ

Chalmers University of Technology conducts research and education in engineer-
ing and natural sciences, architecture, technology-related mathematical sciences
and nautical sciences. Behind all that Chalmers accomplishes, the aim persists
for contributing to a sustainable future — both nationally and globally.

Visit us on Chalmers.se or Next Stop Chalmers on facebook.

\GHALMERS

UNIVERSITY OF TECH NOLOGY

87 Click on the ad to read more

Download free eBooks at bookboon.com



http://s.bookboon.com/ChalmersINTL2016

Problem 4.9

For the beam in Fig. 4.97, which has a length L = 300 mm and is loaded by the uniform load w = 5
kN/m, force F = 1.2 kN applied at point B and bending moment M = 1.5 kNm at point C, determine
(a) the maximum absolute value of the bending moment and transversal load, (b) design the diameter
D of the circular cross-section area for the given allowable stress of 250 MPa. The beam has a circular

cross-section area along its whole length.
[R, =ON, R, =5187.5N, R, =7137.5N, M, =1500 Nm, V,_=5187.5 N, D > 39.4 mm|

Problem 4.10

For the curved beam in Fig. 4.98 determine (a) the reaction at the supports (b) the maximum absolute
value of the bending moment, transversal and normal load, (c) design the rectangular cross-section area
with a width b and height h, when the ratio between h / b = 2 for a given allowable stress o_. For the
solution used the parameters R = 1 m, M = 0.5 kNm, and c,, = 150 MPa.

[R, =0N, R, =803.85N, R, = 803.85 N, M__=696.15 Nm,
V. =80385N, N =803.85N,b>17.1 mm]

Fig. 4.98
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5 Deflection of Beams

5.1 Introduction

In the previous Section we talked about the stress and strain analyses of beams under transverse loading.
Safe design requires that we satisfy not only the strength criteria but also the deformation response. The
deformation response involves the acceptable strains, deflections and slopes which fit the requirements of

the structure. Deriving the formula for calculating the radius of curvature of the neutral surface we have

1 M(x)

p El

(5.1)

This equation is valid if Saint Venant’s principle is satisfied for a beam transversely loaded. The bending

moment varies from section to section and therefore the curvature of the neutral surface will vary as well.

This will constitute the basis for the integration method used to calculate deflections and slopes. There
are several other methods based on different approaches like the energy method (Castigliano’s theorem).

Both methods are discussed in this Chapter.

5.2 Integration method

Fig. 5.1 Cantilever beam

Equation (5.1) represents information about the shape of the deformed beam only, for example consider
the cantilever beam BC of length L acted on by the applied load F, see Fig. 5.1. Usually the analysis and
design of such a beam would require more precise information about the beam’s deformation, i.e. detailed
information about the deflection and the slope at various points of the beam. The problem of calculating
the maximum deflection has particular importance in beam design. Therefore our task is to find any
relation between the position of an arbitrary point, determined by the distance x from the end of the

beam, and the deflection y measured from the axis of the undeformed beam at this point, see Fig 5.2.
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Fig. 5.2

From mathematics we get the curvature at point Q[x, y] to be

|
= | N
2

=t (5.2)
(1+(&))

where dy/dx and d®y/dx* are the first and second derivatives of the function y(x) representing the

1
D

elastic curve. Assuming the elastic response to loading, we can expect a very small value of beam slope

0(x)=dy/dx and its square is negligible compared to unity. Thus we get

d%y M (x)
-y 22 53
dx? EI (53)
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The equation obtained is a second-order linear differential equation; it is the governing differential
equation for the elastic curve. Using the double integration in x for this differential equation we will obtain

the elastic curve. For the prismatic beam we can consider the constant flexural rigidity EI so we have
EI2 = E10(x) = [FM(x)dx + C
ax x)=Jy Mx)dx + C; (5.4)
where C; is the integration constant. By integrating the above equation we obtain

Ely(x) = fox[fox M(x) dx + C;] dx + C,

Ely(x) = fox[fox M(x) dx]dx + Cyx + C,

Fig. 5.3 Boundary conditions

where C; is also an integration constant. With respect to mathematics we get an infinite number of
solutions. To obtain the solution for the beam considered we need to apply boundary conditions, or
more precisely, from the conditions imposed on the beam by its supports. In this Section we will limit
ourselves to statically determinate beams, i.e. the corresponding reactions can be determined my methods

of statics directly. Possible boundary conditions are presented in Fig. 5.3.
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Fig. 5.4 Simply supported beam

The problem of searching for the maximum deflection can be mathematically formulated as the problem
of searching for the maximum value within the interval. For example in Fig. 5.1 the maximum deflection

is at the free end of the cantilever beam.

Let us consider the simply supported beam BC of length L, see Fig. 5.4. Our task is to calculate the
deflection at point D. The solution can be obtained using the step-by-step approach, see Chapter 1. Thus
we get Rp = %F and R, = %F . The beam has three homogeneous parts due to the load and sections.

For each part one can easily determined the bending moment distribution functions as follows

Ml(xl) = RBxl = %Fxl 0< X1 Sg
1 L L

Mz(.Xz):RBxZ—F(xZ—L)=§F(L_XZ) ESXZSE
1 L

M3(.X3)=RB.X3—F(X3—L)=§F(L_X3) ESX3SL

Subsequently we get three differential equations using equation (5.3) because this is not the case of the

prismatic beam, then

d?y; _ Mi(x1) . d’y;  My(x2) | d?y3 _ M3(x3)

dxi>  EL dxy? El; dx3? El,
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Integration of the above equations we get

F 3 FL 2
=—Xx Cix C =—x X Cix C
Y= 5 i+ C1x + (3 Y2 = e 2+1BEI 5+ C3x, + Cy
FL 2
—X X Cex C
6El f+——x3 +Csx3+Cs

V3 = 18E1,

For this problem we get six integration constants. Therefore we need boundary conditions

x1 =0 y1(0) = 0; x3 =1L y3(L)=0

the connectivity conditions between parts of the beam

a=x=;  n(@)=nG me=n=p  %()=xn()
m=n=;  0()=6() m=x=;  &()=6()

Solving the boundary and connectivity conditions we can get the integration constants as follows

Ci = = gspr, Ok +310) C,=0
FL3
Cs = = garr Oh + 671) C== -
Cs =~ Gerns samerr, (0N — 141) Co =~ wEnn ——— (14, — 181,)

LIFE SCIE

Download
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3 Click on the ad to read more

Download free eBooks at bookboon.com



http://s.bookboon.com/umeaa

L
Then substituting the integration constants and x; = 3 into the elastic curve of the first part, the

deflection at point D becomes

L FI3
Y1 (5) =YD = T omarnn (9L +231)
. . o . . LN _ . 4FI3
For the prismatic beam [; = [, = I we will get a solution of Y4 ( 3) =Yyp= VTR
53 Using a Singularity Function to Determine the Slope and Deflection of

Beams

Fig. 5.5 Prismatic simply supported beam
As we discussed before in Chapter 4, the application of singularity functions is a very progressive
methodology. The method can be applied for prismatic beams only. Let us apply the singularity function

a modification of the previous example that has constant flexural rigidity, see Fig. 5.5. We can then write

the bending moment
M(x) = Rgx — F (x —3) (5.5)

Then we have

L
Ely(x) = Ry — peat Cix + C,
6 6
(5.6)
after integrating we obtain
3 g’
Ely(x) =Rg=——F——+ Cix + C
y(x) B 6 1 2 (5.7)
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This equation contains only two integration constants that can be determined from boundary conditions

x=0 y(0) = 0; x=1 y(L) =0

or

N\3

L—=

2
Solving these boundary conditions, we get the integration constants C; = —Sg—f and C, =0 and
3
subsequently we can determine the deflection at point D, y (g) =yp = — % .

The reduction of the number of integration constants is a great advantage of using singularity functions.

5.4 Castigliano’s Theorem

Fig. 5.6
Let us consider the simply supported beam BC of length L acted on by two concentrated forces F, and
F, at points D, and D,, see Fig. 5.6. The strain energy accumulated in the beam is equal to the work

done by the applied forces since they are applied slowly. To evaluate this work we need to first express

the deflections y, and y, in terms of the loads F, and F,.

Fig. 5.7
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Let us assume that only F is applied to the beam, see Fig. 5.7. The deflection at both points is proportional

to the applied load F,. Denoting these deflections by y,, and y, we have

yu = a1k and

Yo1 = a1 Fy (5.8)

where a1 and ay; are the influence coefficients. These constants represent the deflection at points D,

and D,

Now we apply the load F, separately to the beam, see Fig. 5.8. Denoting deflections at points D, and

Dby y,, and y,, we have

Yiz = a2 B and

Vo2 = ok (5.9)
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Applying the principle of superposition we get the total deflection at these points as follows

Y1 =Y11 tyi2 = anki +apk,

Y2 = Y21 + Y22 = @b+ ank; (5.10)

Fig. 5.9

To compute the work done by forces F, and F, and thus the strain energy of the beam, it is convenient

to apply the force F first and then to add the force F, after, see Fig. 5.9. Then we have
1 1 1 2 1 2
W =U=2Fiyn + iy +5Fyn = Jan i + apliF + a5k (5.11)

If the load F; had been applied first and then the load F,, the work done by those forces would be

calculated as
1 1 1 1
W =U=_Fyy +Fyn +5Fayn =500 Ff + ay FiF, +5 a5 Ff (5.12)

This can be illustrated in Fig. 5.10. Comparing equations (5.11) and (5.12) we get @15 = Q1.

Fig. 5.10
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Thus we can conclude that the deflection produced at D, by the unit load applied at D, is equal to the
deflection produced at D, by the unit load applied at D,. This is known as Maxwell’s reciprocal theorem
(Maxwell 1831-1879).

Now differentiating equation (5.11) with respect to F, we get

au

o anFy +apF, =y (5.13)

Differentiating equation (5.11) with respect to F,, while keeping in mind that @1, = a1, we obtain

ou

o5 =l tank =y, (5.13)
2

Fig.5.11

The physical meaning of the last equations is that, the deflection or the displacement of the applied load
point is in the direction of the applied load and is equal to the partial derivative of the strain energy
with respect to the applied load, see Fig. 5.11, namely

U
- =B (5.14)

This is the well-known Castigliano’s theorem, (Castigliano 1847-1884). This formulation can be extended

to the applied bending couple M and torqueT, i.e.

au au
—=40 and —

We need to emphasise that Castigliano’s theorem can only be used for calculating the deflection y, the

slope, 0 or the angle of twist ¢ at the points where the concentrated forces or bending couples (torques)

are acting.
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5.5 Deflections by Castigliano’s Theorem

Fig.5.12
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In the previous Section we have discussed Castigliano’s theorem that is based on the determination of the
strain energy. The strain energy has been defined in Chapter 4. The individual strain energies for each
basic loading are presented in Appendix A. Then using the principle of superposition we can express
the total accumulated strain energy as the sum of individual energies accumulated for each load in the

structure, i.e.

where Uy, Uy, Ur, Uy are strain energies caused by the bending moments, shear forces, torques and

normal forces.

Let us consider the cantilever beam BC of length L subjected to the distributed load w, see Fig. 5.12.
Our task is to calculate the deflection and the slope at its free end B. Castigliano’s theorem can not be
apply directly, because there are no concentrated forces, nor is there any applied couple at point B. To
overcome this problem we apply a fictitious or dummy load in the required direction. Thus we can

calculate the deflection as follows

U _

0 = Yo (5.17)

Fig. 5.13
Then making () = ( in this equation, the deflection reaches a value corresponding to the given load.
In our case we can apply a fictitious downwards force Q5 at point B, see Fig. 5.13. Then the bending
moment distribution function is

M(x) = —Qp — %sz (5.18)

using U = Uy, the effect of shear force contribution can be neglected and we have

au L M(x)oM(x)
Yp == f

= 30n 0 B a0, dx (5.19)
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The derivative of the bending moment with respect to the fictitious load is

IM(x) — _
0B (5.20)
aM(x)

9Qg
obtain the deflection at point B for a given load

Substituting for M(x) and from (5.18) and (5.20) into equation (5.19), and making Q5 = 0 we

1 cLf 1 wL?
Ye =5 )o (—;wxz) (=x)dx = —— (5.21)

The positive sign indicates the downwards direction since we assumed the fictitious downward load.

wlL*

For determining the slope g we can apply a fictitious counterclockwise couple Mp, see Fig. 5.14. Then

we have
1
M(x) = —Mg — waz (5.23)
_ U rLM&x)IM(x)
05 T oM Jo TEI oMy dx (5.24)
oOM(x) _ _
aMg 1 (5.25)
Fig.5.15

Substituting for p(x) and ZMT(X) from (5.23) and (5.25) into the equation (5.24), and making My = 0 we
B

obtain the slope at point B for a given load

1 L

O = ~
B~ grdo

(— %wxz) (—Ddx = Vg—g (5.26)

The positive sign indicates the counterclockwise direction since we assumed the fictitious

counterclockwise load.
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w3
O0p = oEl (5.27)

5.6 Statically Indeterminate Beams

Statically indeterminate problems can be solved in the usual way by removing the redundant supports
and replacing them by unknown reactions. Then we can apply the step-by-step approach for determining
internal force distribution functions. But these functions involve unknown reactions. To determine those

reactions we can apply deformation conditions that correspond to the removed supports.

Let us consider the cantilever beam BC with a length L subjected to the distributed load w, see Fig. 5.15.
The presented beam is statically indeterminate to the first degree. We replace the redundant support at B
by the unknown reaction Rp. To get the same deformation response we need to impose the deformation

condition

Fig.5.15

ou L M(x)oM(x) _
IR~ fo EI ORp dx =0 (5.28)

)’B—aRB—

The bending moment and its derivative can be expressed as

1
M(x) = Rpx —waz (5.29)
oM(x)
20, ~ (5.30)
Substituting for M (x) and a;\/IQ(x) = x from (5.29) and (5.30) into equation (5.28) we get
(R L _ Rplt_wit
0=% Js (RBx 2 WX )(x)dx T 3El BEI (5.31)

Solving the above equation for the unknown reaction Rp we obtain

Rg = ZwL 0 (5.32)
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The same problem can be solved by the integration method. We can use the same bending moment

distribution function M(x) = Rgx — %sz, after substituting into equation (5.3) we have

d’y _ M(x) _ 1 1 2
oI m (RBX —gWx ) (5.33)

and by integrating we get

dy _ _L(p ¥ _1 .3

= f(x) = = (RB S —owx )+ C; (5.34)
1 31

y(x) = E(RB % — wa‘*) +Cix+C, (5.35)

The equation (5.35) contains three unknowns: two integration constants Cy, C; and the reaction Rp.

Therefore we must impose three equations: two boundary conditions and one deformation condition as follows

x =1L ye=y(L)=0
x=1L 0, =6(L) =0 (5.36)
x=0 yg =y(0) =0

Solving this system of equations, we obtain the integration constants C; = —W—LS, C, = 0 and the

3 48EI
reaction Rp = EWL.

5.7 Examples, solved and unsolved problems

Problem 5.1

Fig. 5.16
For the loaded beam shown in Fig. 5.16, Determine (a) the equation of the elastic curve, deflection at

point C, and slope at point B (b) Using the singularity function, express the deflection as a function of

the distance x from support B, and determine the deflection at point C and slope at point B.
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Solution

Fig.5.17

Drawing the free-body diagram of the beam, see Fig. 5.17, we find reactions from the equilibrium

equations

ZFiXZO: RBx =0

> M, =0: Ry)L-FL, =0 = R,=F—

L
L

L
D E,=0: R;+R,-F=0 = RB=FT2

sssssssssssssvssssssssssssssssssssssssssssesssssnsssssssssssssssssssssssfilcgte]-Lucent @
www.alcatel-lucent.com/careers
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o
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X € <O, L1>
Fig.5.18

(a) the equation of the elastic curve, deflection at point C, and slope at point B

Drawing the free-body diagram of portion BQ of the beam (Fig. 5.18) and finding the moment about
Q, we find that

zMiQ =0: Mi(x)) — Ryx; =0 = M;(x,) =Rgx,
LZ
M, (x;) = Ryx, :FTXI (a)
Substituting for M (Eqn. (a)) into Eq. (5.3) we write

d’yy, M 1

1 _L
=—=—(Ryx,)=—F—=2x,.
dx; EI H(BJ El L'

Integrating twice in x,, we have

dy, _FLxj,
dx, EIL 2

19

FL,x;
X )=——=—+CXx,+C,.
yi(Xp) ELL 6 1% 2

X, € <O, L2>

Fig. 5.19
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Drawing the free-body diagram of portion QD of the beam (Fig. 5.19) and finding the moment about
Q, we find that

ZMiQ =0: -M;(xy) + Rpx; =0 = M (x,)=Ryx,

L
M, (xy) =Rpx, = Fflxu- (b)
Substituting for M (Eqn. (b)) into Eq. (5.3) we write

d’y, _ M, (xy) _ 1 1 L

—(R,x,)=—F—x,,.
dx; EI EI( Xu) El L "

Integrate twice in x , we have

°

dyy _ ihx_ﬁ_f_ C

dx, EIL 2 7

FL x
Yu(Xy) :af%"'cﬁiu +C,.

The integration constant unknowns C,, C,, C, and C, are found through boundary conditions
) x,=0 = yx)=0,
2) X;=0 = y,x,;)=0,
3) ;=L %=L, = yi(x) =yu(Xn),

4) x =L, x;=L, = ¥y (x)=-yxy).
Results from the boundary conditions are

FL,O
Vi =0)=0= "2+ GO0+C, = G =0

FLO
Yuly =0)=0=——t=4C0+C, = C,=0
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FLL, (L,+2L,) FLL, (2L, +L,)
C =- C, =-
6EI L 6EI L

The equation of elastic curve in portion BC and CD is

ih)g _ FLL, (L1+2L2) X
6EI L '  6EI L !

yi(x)) =

ih,f _FLL, (2L, +L,)
6EI L "  6EI L

Xy

yu(Xy) =

Deflection at point C is

F L,s FLL, (L+2L;) _ FLL

x,=L,)=——= - .
YI( 1 1) 6EI L 1 6EI L 1 3 EIL
and slope at point B is
’ L,+2L
@(XI:O):d_VzihO__,_Cl:CI:_FLle( 1 2)
dx EIL 2 6EI L
107
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xe<0,Ll+L2>

Fig. 5.20

Fig. 5.21

(b) Using the singularity function, express the deflection as a function of the distance x from the support B
and determine the deflection at point C and slope at point B.

From Fig. 4.11, we have
M(x) =R, (x)' =F(x-L,) (e)
Using Eq. (5.3) and Eq. (e), we write

dZY_M(X)_ 1 1 1
Tr == Ry () ~F(x-L,) |

and, integrating twice in x,

dy R F
EIi:TB@()z—E(x—L,}%C] (f)
R F
El y(x):?B<x>3—g<x—Ll>3+Clx+C2 (g)

The boundary conditions are

1) x=0 = y(x)=0,
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2) x=L = yx)=0.

Using the first condition and noting that each bracket < > contains a negative quantity, and thus equal

to zero, we find

EIO:%(OY —£<O—Ll>3 +C0+C, = C,=0

From the second condition we get

R F FL L
O=?3<L>3—E<L—LI>S+C1L:> C === (L +2Ly)
Substituting C, and C, into Eq. (g), we have
1Ry, s F 3 FL,L
X)=—/| —2(x) ——(x-L,) ———2(L,+2L,)x
300 =gl B2 )~y -T2t x|

Deflection at point D. Substituting x = L, into the deflection curve equation, we find

1| R s F ;s FL’L
Y(X:LJ:E{?E«LJ _E<L1_L1> - 6]LZ(L1+2L2)}

FLL2
x=L)=——2>2%
y(x=L,) TEIL

The slope at B is

_oy = o LRy Frg py2
o -0~ 0 501

CFLL,
6L

(Ll + 2L2 ):l

_ F L1L2 (Ll+2L2)

O =0 ="—5 L

Download free eBooks at bookboon.com



Introduction to Mechanics of Materials: Part Il Deflection of Beams

Problem 5.2

Fig. 5.22
For the uniformly loaded beam in Fig. 5.22, Determine (a) the equation of the elastic curve and the
deflection and slope at point B (b) Using the singularity function, express the deflection as a function

of distance x from the free end at B and determine the deflection and slope at point B.

Solution

Fig.5.23
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xe<0,L>

Fig. 5.24

(a) the equation of the elastic curve and the deflection and slope at point B

Drawing the free-body diagram of portion BQ (Fig. 5.24) we take the moment about Q and find that

2 2
WX WX

> M, =0: M(x) + > =0=MKx)= — > (2)

Using Eq. (5.3) and Eq. (e), we write

Py M_ 1wl w
dx* EI EI 2 2FEI

and integrating twice in x,

ﬂ wx®

G
dx 6EI b)
The boundary conditions are
1) x*L = y(x)=0,

2) x=L = y'(x)=0.
and from the second boundary condition, we have

L’ L’
dy W +C, = C/ = W
dx| 6EI 6EI

using the first boundary condition, we get

4 4 4
yx=L)y=0=—L WL o oo 1M
24E1  GEI 8 EI

Substituting C, and C, into Eq. (b), we have
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wx*  wl? 1 wi?

+ X —=
24El  6EI 8 EI

(c)

y(x)=-

Substituting x = 0 into Eq. (c), we find the deflection at point B

1 wL'

= X:O = ——
Yp =YX =0)=—o—

and slope at point B

w0’ N wl’ _ wl’
6El O6EI 6EI

O, =0(x=0) = dv =—
dx

Fig. 5.25

(b) Using the singularity function, express the deflection as a function of the distance x from the free end
at B and determine the deflection slope at point B.

The equation defining the bending moment of beam using Fig. 4.11, we have

M(x) = —%<x>2 (d)
Using Eq. (5.3) and Eq. (d), we write

ﬁ:mzi{_yﬂ
dx* EI  EI

and multiplying both members of this equation by the constant EI, we have
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Integrating twice in w, we get

d
EId—Z=—%<x>3 +C

El y(x) :—E<x>4 +Cx+C, (e)
24
The boundary conditions from Fig. 5.23 are

1) x=L = ykx)=0,

2) x=L = y'(x)=0.
From which, we have

3
Elﬂzoz—%(mﬁq = ¢ =YL

dx

and
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w4 wl
Elyx=L)=0=-—(L) +—L+C
y(x ) 24< > 6 2

C = —le4
8

Substituting C, and C, into Eq. (e), we have

1 w o, 4wl | I
X)=—| ——(X) + Xx——wL
y&) EI{ 2 X g g }

The deflection at point B is

3 4
yg = y(x=0) = 1 { W<0>4+WL 0—le“}: I wL

EIl 24 6 8 "8 EI

The slope at point B is

3 3
0, —ox=0)=_1 ~Z (o) + wh |_wL
dx EI| 6 6 | 6EI
Problem 5.3
Fig. 5.26

For the beam and loading shown in Fig. 5.26 Determine (a) the equation of the elastic curve, deflection
at C, and slope at B and C (b) Using the singularity function, express the deflection as a function of the

distance x from the support at B and determine the deflection at C and slope at B and C.

Solution

Fig. 5.27
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From the free-body diagram in Fig. 5.27 we have the reactions

Drawing the free-body diagram of portion BQ of the beam (Fig. 5.28) and finding the moment about
Q, we see that

ZMiQ =0: Mi(x)) = Rpx; =0 = M (x;) =Rpx,
1
M (XI) WLXI ()

inserting this result into the differential equation of an elastic curve, we get

d’y, M_11

== wLx,
dx; El EIS

Integrating twice in x, we have

% wL xI
dx, SEI[ 2
y,(x;) = IX +Cx,+C, (b)

e(0,L/2)

Fig. 5.28
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Xy € <O, L/2>
Fig. 5.29

In the same way, we finding the elastic curve in portion QD, from Fig. 5.29, we have

2
ZMiQ =0: -M;(xy) + Rpxy _m=0
wxZ 3 wx?
M, (x,) = Rpx, — 2H =§WLXII - 2H (c)
and
d2y2H _ M, (x4,) ZL EWLXH _ WX%I
dx;, EIl EI| 8 2
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M_L{Ewﬁ_ﬁ _&%}Q

dx, EI|8 2 6
3wL wx
Yu(Xy) = 48E] X?I - 24;1 +Cxy +C,
X € <0, L>
Fig. 5.30
Fig. 5.31

The boundary conditions, from Fig. 5.26, are

1) x=0 = y,(x)=0,

2) x,=0 = y,(x,)=0,

3) x=L/2,x,=L/2 = y(x)=y,(x,)

4) x=L/2,x =L/2 =y (x)= -y ,(x,)

After using all the conditions, we solve for the integration constants

7 wl’ 3wl

17 384 E1° C,=0, 128 EI’C,=0.

and the equations of the elastic curve are

Download free eBooks at bookboon.com
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wL , 7wl

X;)= X; — X e
yilx) 48EI ' 384 FEI ' (€)
3wL 5 wx; 3wl
X = Xy — — X (f)
Yulu) 48EI " 24EI 128 EI "

The deflection at point C is
L) wL (LY 7wl (L 5wl

Vo=V | x==|=—| = | -———| = |=——
2 48EI\ 2 384 EI\ 2 768 EI

and the slope at point C is

 16EI

Lj wL ELJE 7wl 1wl

®C=®(xl:— = - =—
2 2) 384El 384 EI

The slope at point B is

wL

B 7wl 7wl
16E1

®. —0(x =0 - __
c=0(x=0) 384 El 384 Bl

(o)

(b) Using the singularity function, express the deflection as a function of the distance x from the support
at B and determine the deflection at C and slope at B and C.

Using Fig. 4.11, we have
w L\ wL w L\’
M(x) =R, (x) ——(x-=) =—(x) - =(x-=
®) B<>2< 2> 8<>2< 2>
Substituting M(x) into Eq. (5.3), we have
y M 1| wL L\’
dy M) _ 1 LT
dx EIl EIl 8 2 2

now multiplying by EI, we get

d’y wL, u w L\’
praY WLy Wi L
dx 8 2 2

Integrating twice with respect to x, we have
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3
EId—y:W—L<X>2—X x—£ +C,
dx 16

wL w L\*
3
El y(X)=4—8<X> _—<X_E> +C1X+C2

The boundary conditions are

1) x= 0= y(x)=0,
2) x=L = y(x)=0,

from which we have

A
: 384~ C,=0.

Deflection of Beams

(g)

The equation of the elastic curve using a singularity function is
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1lwL, v w/ L\ 7wl
y(x)=— —<x> ——(x-=) - X
EI| 48 64 2 384
(h)
The deflection at point C is
(X_LJ_L wL/L\' w /L L\' 7wL'L
Y 2) EI| 48\2/ 64\2 2 384 2
. O SwL'
ye 2 )" 768 EI
while the slope at point C is
of xe L)V LIwL/L\Y w /L L\T 7wl
2) dx EIl 16 \2/ 16\2 2 384

3
0, =0 x=2 | =L
384 EI

The slope at point B is
LY 1|wL,. w/ L\ 7wl 3
®(xz—):— —<0> ——(0-—=) - 0O,=0 X=£ =- AL

2 El| 16 16 2 384 2 384 EI

Problem 5.4

Fig. 5.32

For a beam subjected to a moment shown in Fig. 5.32 determine (a) using a singularity function, find

the deflection as a function of the distance x from the support at B, (b) the deflection at C and slope at B.
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Solution

X e<0,L>

Fig. 5.33

From the free-body diagram in Fig. 5.33 we have the reactions
ZEX = O : RBx = 0

M
> M;;=0: R,L+M, =0 = Rp=—=

[

M
D E,=0:R,;+R,=0 = R;= “Rp=-—*

Using Fig. 4.11 we obtain the bending moment at x (see Fig. 5.33)

M) =R, <x>1 -M, <X—a>0 =——2 <X>l -M, <X —a>0

We insert the last expression into the equation of the elastic curve Eq. (5.3) and get

dzy_M(x)_L M R
x> EI _EI[ () ~M (x aﬁ

After double Integrating the last expression, we have

dy = M, 2 RV
de_ 2L<X> M0<x a> +C,

El y(x)=— I;/IL‘: <x>3 - 1\;" <x —a>2 +Cx+C,
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Fig. 5.34

Constants C, and C, can be determined from the boundary condition shown in Fig. 5.34. Setting x =
0, y = 0 in Eq. (a) and noting that all brackets contain negative quantities, therefore equal to zero, we

conclude that
C,=0.
Now setting x = L, y = 0, and C,=0in Eq. (a), we write

M M
Bly(x=1)=0=--" (L) - > (L-a)’ +CL.
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Since all the quantities between the brackets are positive, the brackets can be replaced by ordinary

parentheses. Solving for C,, we find

_M,

C =
6L

(3b°-17)

Substituting C, and C, into Eq. (a), we have

1| M 3 M 2 M 2 12
Y(X):ﬁ‘:_ °<x> - 2" <x—a> +6_£(3b -L )X:|

We find the deflection at point C

y(x =a) :L[_ M, <a>3 +&(3b2 —Lz)a}

EIl 6L 6L
M
=y(x=a)= °—ab(b—a).
Yo =¥(x=a)=rrab(b-a)
The slope at point B we find
dv 1 M 2 1 M
00)=—=—|-—2(0) =M _(0—a) +—=(3b* L
© dx EI[ 2L<> °< > 6L( )}

0, =0(0) = %(sz -L)

Problem 5.5

Fig. 5.35

Using the singularity functions for the beam shown in Fig. 5.35 determine (a) the deflection as a function

of the distance x from the support at B, (b) the deflection at B, D and slope at G.
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Solution

x €(0,3L)

Fig. 5.36
From the free-body diagram in Fig. 5.36 we have the reactions
> E =0:R. =0
> M;;=0: FBL-R.2L+FL=0 = R.=2F

D E,=0: R.+R;-2F=0 = R;=0

Using Fig. 4.11 we obtain the bending moment at x (see Fig. 5.36)
M(x) = —F(x)' + R¢ (x —L)' =F(x-2L)’

M(x) = —F(x)'+ 2F(x-L) —F(x-2L)' (a)

Substituting Eq. (a) into the equation of the elastic curve Eq. 5.3 we get

d’ M 1 1 1 1
- E(;‘) :ﬁ[—F<x> + 2F(x-L)'~F(x-2L) |

dzy 1 1 1
EIF:—F<X> + 2F(x—L) —F(x-2L)
X

After double integrating with respect to x, we have

dy F F
EId—X =——(x)"+ F(x-L)’ —5<x—2L>2 +C,

El y(x):—§<x>3 ¥ §<X_L>3 —£<x—2L>3 N

+Cx+C,
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The boundary conditions are

1) x=L= y(x) =0,
2) x=3L= y(x) =0,

from which we have

C g C, _3F.
12 4

Fig. 5.37
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The equation of the deflection curve is

1 F, s F 3 F 3
X)=—|—-——(x) + —(x-L) ——(x-2L) |+
y@) EI|: 6<> 3< > 6< >:|
(c)
+L EFLZX—EFL3
EIl 12 4
and is graphically shown in Fig. 5.37.
The deflection at point B is
1 3FL
=yx=0)=—0C,=———.
Ve =yx=0)= G =— 0
while the deflection at point D is
oy S
Yp =Y 6 EL
and the slope at point G is
dv 1 M 2 1 M
OKx)=—=—|—2(x) -M_{(x—a) +—>(3b*-L*
O~ R e )
47 PL?
O,=0x=3L)=- .
0 = = E
Problem 5.6
Fig. 5.38

Using the singularity functions for the beam shown in Fig. 5.38 determine (a) the deflection as a function

of the distance x from the support at B, (b) the deflection at B and D.
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Solution

X € <0, L>
Fig. 5.39

We begin by solving for the reaction at point B, because x starts from point B. From the free-body

diagram in Fig. 5.39 we have the reactions

SF, <0: Ry, =0

> E, =0: RB—W7L=0 = R,= WTL

> M =0: My +w%%+%j= 0 = M, =—%sz
The bending moment using the singularity function is

M0 =R, (x) + M, (x)' _E<x_£>2

M(x) = WTL<X>1 —%sz <x>0 —X<X —£> .

Substituting M(x) into the elastic curve equation we get
2 2
d_z _Mx_ 1 W_L<X>' 3. () - ¥ x _L
dx EI  EI| 2 8 2 2

d’y wL 3 W L\’
EI§:7<X>1—§WL2<X>O——<X——> .

Double integrating the last equation with respect to x, we get
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3
dy wL, » 3 ,, u W L
B oM Sy =Y (x-EY) 4 q
dx 8 6 2
4
wL, s 3 b2 W L
BLY00 = T30 g WL ) (x5
+Cx+C
1 2 (a)
Fig. 5.40
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The boundary conditions from Fig. 5.40 are

1) x=0 = y(x)=0,

2) x=0 = DY _,
X
from which we get
¢ =0, C,=0.

After substituting C, and C, into Eq. (a) we get the deflection at x

1 L, s 3 2/ \2 L\*
Y(X):ﬁl:%<x> —EWL <x> —;V—4<x—5> :l

Graphically the deflection curve is shown in Fig. 5.40.

Deflection at point C is

1|wL/L\" 3 L\’
=y(x=LR2)=—|—(=) ——wL’ (=
Yo =ylx=L12) EI{IZ <2> 16 <2>}

7 wLt
192 El

Ve =y(x=L2)=-
Deflection at point D is

4
y(x:L):L W_LL3_iWL4_£ E
EI| 12 16 24\ 2

_ AL wl
384 EI

Yp =y(x=L)=

Problem 5.7

Fig. 5.41
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Using the singularity functions for the beam shown in Fig. 5.41 determine (a) the deflection as a function

of the distance x from the support at B, (b) the deflection at C.

Solution

(0,4L)
Fig. 5.42

From the free-body diagram in Fig. 5.42 we find the reactions
SF, =0:R,, =0
> My=0: Ry4L+w2L(2L=0 = R, =wL
D> E,=0: R, -w2L=0 = R;=wL

The bending moment, see Fig. 4.11, are

M(x) =R, <x>1 —%<x —L>2 +%<){—3L>2

M(x) = WL<X>1 —%<x - L>2 +%<x - 3L>2
Using Eq. (5.3), we write
d2

1 W 2 W 2
EIdT—WL<x> -—(x-L) +?<x—3L>

and then double integrate with respect to x,

dy wL w w
EI di ) L e (x-3L) + G
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El y(x) =W?L<x>3 —%(x —L>4 +%<x—3L>4 +Cx+C,

Fig. 5.43

Using the following boundary conditions (see Fig. 5.43)

1) x=0=y(x) =0,
2) x=4L = y(x) = 0.
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The equation of the elastic curve using singularity function is

y(x) = é[w?L@(y —;V—4<x - L>4 +;V—4<x - 3L>4 —%WL&}
Deflection at point C is
Yo =y(X=2L)=—19WL4-
8 EI
Problem 5.8

Fig. 5.44
Apply Castigliano’s theorem for determining the deflection at point C of the beam presented in Fig. 5.44.

Solution

X e<0,L>

Fig. 5.45

To solve using Castiglianos theorem’s we need to apply an external force at the point that we wish to

find the deflection. Therefore, at point C, we assume a zero value force F.
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Fig. 5.46

Drawing the free-body diagram of portion CQ (Fig. 5.46) and taking the moment about Q, we find that

X
Z)@fm:—M@)—WXE—Qx=0

M(x)= — WX%—FCX

(a)
Definition of deflection by Castigliano is

U

YC_E

(b)

where U is the strain energy defined in Appendix, Eq. (A.31), which is

L M2 LM2
U =_([ (Iysz)dx =-!-2EI dx

Substituting Eq. (A.31) into (b), we have

oUu 1 ¢ OM(x
ye = o == Moo 2 ax
F. EI oF,

0

()

Substituting Eq. (a) into Eq. (c), we get

I
yC:a—U:L —WXE—FCX 2 —WXi—FCX dx
oF. EIjy 2 | OF. 2
. -
C_@_U:L - wx—-Fx (—x) dx
oF. EIj ]
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After integration we have the deflection at point C

1w w[x*T w
YVe=—|| =X |dx=—|—]| =
El4| 2 2EI| 4 |, SEI

Problem 5.9

Fig. 5.47

(d)

For the beam and load shown in Fig. 5.47, use the Castigliano’s theorem to determine the deflection at C.

Solution

From the free-body diagram in Fig. 5.47 we find the following reactions

ZFixz(): RBX =0

> Mp=0:R,3L-F2L = 0 = R,==F

D> E =0:R,+R,-F =0 = Ry=—F

Fig. 5.47

X; € <O, 2L>

Fig. 5.48
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Drawing the free-body diagram of portion BQ of the beam (Fig. 5.48) and finding the moment about

Q, we can see that

ZMiQ =0: M;(x;) = Rgx; =0 = M,(x,) = Ryx,

F
M (x,) = gXI
()

Xy € <0, L>

Fig. 5.49

Drawing the free-body diagram of portion QD of the beam (Fig. 5.49) and finding the moment about
Q, we find that

ZMiQ =0:-M;(xy) + Rpx; =0= M (x,) = Rpxy
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2
M, (x,) = EFXH
(b)

In order to find the deflection at point C we must modify Castigliano’s theorem in Eq. (5.14) for two

portions, which is

U 1% oM (xl)

Ye = aF ﬁ 1( I)

+_I 11( ll)aM(XH) XII

(c)

Substituting Eq. (a) and Eq. (b) into Eq. (c) we have

1 %F  x, 1¢2 2
Ye =ﬁ£§XI? dxl+ﬁ£§F XIIEXH dx,

Integrating the last equation, we get the deflection at point C
_F[x], 4F[x] _4FC
Y Z9E1|3 | T9EI| 3 | 9 EI

Problem 5.10

Fig. 5.50

For the uniformly loaded beam shown in Fig. 5.50, determine (a) the reaction at support B applying
both Castigliano’s theorem and the integration method, (b) the reaction at support B and using the

singularity function.

Solution

This problem is a statically indeterminate one. For its solution we need the boundary condition, which
states that the deflection at point B is equal to zero, because in this point we have a rigid support. This

support can then be replaced with the unknown reaction R, see Fig. 5.51.
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Fig. 5.51

X € <0, L>
Fig. 5.52
(a) the reaction at support B using Castigliano’s theorem and the function of the elastic curve

Drawing the free-body diagram of portion BQ of the beam (Fig. 5.52) and taking into account the

moment about Q, we find that

ZMiQ =0: M(x) - RBX+WX§ =0

2
WX

2 (a)

M(x) =R x—

Fig. 5.53
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From the equilibrium of forces in the x and y direction we have
D E, =0:N(x) =0

D F,=0: Ry-V(x) —wx=0 = V(x)=R;-wx

Substitute the bending moment, Eq. (a), into Castigliano’s theorem (Eq. 5.14) we obtain the following form

ou 1§ OM(x)
=—— =-—|(M dx=0
" 7R, EI-([ ) R, (b)

and we have
L 2 2
0 =é (RBX——W; j_ﬁli (RBX— W; j dx
0 B

From the solution of the last equation we get

3
RB = gWL (C)

Substituting this into the bending moment of Eq. (a), and the equation for the transversal load, we have

2 2
WX ZEWLX—WX
8 2

M(x) = Ryx —
3
Vx)=R;-wx =§WL—WX

The bending moment and transversal load diagram is shown in Fig. 5.53.

Substituting M(x) into the elastic curve equation Eq. (5.3)

2 2
d_}zlz M(x) zi EWLX_WX
dx EI  EI|8 2

2 2
EId—};:EWLx— w2
dx” 8 2

and double integrating the last equation with respect to x, we have
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3
) S A INCI Sl
dx 16 6
WX4

EI y(x):%ng)f— 24 +Cx+C,

(d)
The integration constants C, and C,, are found from the following boundary conditions

1. x=L = y(x) =0,
2. x=L=y(x) =0,

Note that we cannot use the condition x = 0, y = 0 because this condition was used for the calculation

of the reaction at point B and thus the integration constants are

C] :—LWLE}’ C2 =0
48
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Substituting these into Eq. (d), we have

(X)—L —wlLx
Y 7EI 48 24 48

(b) the reaction at support B and the elastic curve using the singularity function.

Using Fig. 4.11 we find the bending moment and transversal load with the singularity function
1 2
M(x) =R, <X> ——<X>
0 1
V(x) =R, <X> -W <X>

Using Eq. (5.3), we write

dzy_M(X)_L W \2
dx> EI EI[ Ry {x) =7 () }

2
BI9Y - R, (x) - W)

2
X

Integrating the last expression twice with respect to x we have

Fig. 5.54
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The boundary conditions from Fig. 5.51 are

1. x=0= v(x) =0,
2. x =L = v(x) =0,
3. x=L=v(x)=0.
Using all boundary conditions we get
Cl :—4—8WL , C2 = 0, and RB :§WL

Substituting the integration constants into Eq. (e), we have

v(X) = é[vlv—é“(xf —%(xf —LWL3X:|

where the bending moment is

M(x) = %WL<X>1 ——<X>2

and the transversal load is

V(x) = %WL<X>O —W<x>1

Diagram of the elastic curve can be seen in Fig. 5.54.

Problem 5.11

Fig. 5.55

For the beam with the load shown in Fig. 5.55 determine, (a) the reaction at all supports by using

Castigliano’s theorem, (b) draw the diagram of bending moment and transversal load.

Solution

The problem is statically indeterminate so we first exchange the support at point C with an unknown
reaction R . This reaction is found from the deformation condition, which says that the deflection at

point C is equal to zero (y. = 0). (See Fig. 5.56).
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Fig. 5.56

Fig. 5.57

The next step is to now solve for Fig. 5.57, where we consider R to be known. From the free-body

diagram in Fig. 5.57 we find the reactions to be a function of the force R , which are

ZFix=0: RBx :0

> M, =0: RD%L—RCL—w%L%L =0

4
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2 3
R,=—R.+=wL
D 3 C 4

> E, =0: RB+RC+RD—%WL =0

1 3
RB = ERC +ZWL

X, € <O,L>

Fig. 5.58

Drawing the free-body diagram of portion BQ of the beam (Fig. 5.58) and considering the moment
about Q, we find that

ZMiQ =0: M,(x;) — RBXI+WXI% =0

2 2
WX 1 3 WX
MI(XI):RBXI—TIZ[ERC+ZWLJXI— I

2 (a)
where the normal force is
ZEX =0: Ni(x;) =0
and the transversal force is
ZFiy =0: R; - V|(x;) —wx, =0
1 3
Vi(x;) =Ry —wx, =—R. +—=wL-wx,
3 4 (b)
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X, € <O, L/2>

Fig. 5.59

Drawing the free-body diagram of portion QD of the beam (Fig. 5.59) and considering the moment
about Q, we find that

X
ZMiQ =0: =My (xy) + Rpxy — WXH% =

2
WXq

2 (©)

2 3
M, (x,) = (ERC +ZWLJ Xy~

The normal force at portion QD is
zFix =0: Ny(xy) =0

and the transversal force at portion QD is

ZFiy =0: Ry +V(xy) —wx,; =0

2
Vi(x,)=-Rp+wx, = _(ERC +%WL)+ WX

(d)
Now we use the deformation condition by Castiglianos theorem which says
v, = ou _ 1 M(x )GM(X) dx =0
oR. EIj, R,
For two portions we write
2L
0=-1m, D)
EI R
(e)

1 I n(x n)aM(XH)

C

I

and substitute Eq. (a) and Eq. (c) into Eq. (e), to get

Download free eBooks at bookboon.com



Introduction to Mechanics of Materials: Part Il Deflection of Beams

1 e[ 3 wx? | x
Oz—j [—RC-F—WL)XI— L=l dx, +
Ely (\3 4 2 |3
1% ((2 3 wx2 | 2
aj{(ERC+ZWL XH—TH EXIIdXII
0

Solving for the last equation we get

R, =—-—wL.
32 ()

While the other reactions are

Ry = 1 —EWL +§WL=+£WL,
30 32 4 32

RDZE(—EWLj+§wL:+LWL
30 32 4 16

(b) draw the diagram of bending moment and transversal load
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The bending moment of portion BC is

2
M, (x,) = %WL W;I

and the transversal load is

V(Xl)— R +2WL WX,

The position of the local extreme for the bending moment is found from the transversal load, which is

equal to zero in the extreme position

VX, =X )= WL WX, =0 = X

The bending moment in the extreme position is

169
M, (x = ——wL
I( I ext) 2048

Bending moment of portion CD is

2

1 WX
M, (xy) = 16 —wlLx, — 5 2

transversal load is

1
Vi(xy) = _EWL T WXy

The position of the bending moments local extreme is found from the transversal load, which is equal

to zero at the extreme.

1
VH(XH exl) __6WL+WX =0 = Xext:EL

The bending moment in the extreme position is

2

1 L w(L 1,

M Xy =X =—WL——— —_— =—WL
H( 1T ext) 16 16 2 (16)
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The bending moment and transversal load diagram can be seen in Fig. 5.60.

Fig. 5.60

Problem 5.12

Fig. 5.61

For the curved beam, loaded at its end, see Fig. 5.61, determine, (a) the reaction at all supports by using

Castigliano’s theorem, (b) the diagram for the bending moment, transversal and normal load.

Solution

Fig. 5.62

Download free eBooks at bookboon.com



Introduction to Mechanics of Materials: Part Il Deflection of Beams

This problem is statically indeterminate so we must convert it to the statically determinate problem by
representing the roller support by an unknown reaction R, in Fig. 5.62. We find this reaction from the

boundary condition that the deflection in this point is equal to zero.

Fig. 5.63

Drawing the free-body diagram of portion BQ of the curved beam (Fig. 5.63 or Fig. 5.64) and considering
the moment about Q, we find that

zMiQ =0: —M(¢) + R;Rsinp—FR(1-cosp) =0

M(¢p) = RyR sinp—FR(1—-cos ). (a)

www.job.oticon.dk
PEOPLE FIRST
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The force 2F and R, decompose to a new coordinate system represented in Fig. 5.64 with equilibrium

in the X'y’ coordinate system, finding normal load

D> E.=0: —N(¢) +Fcosp+Rsinp =0

N(¢p) =Fcos¢p+Rsing
and transversal load
ZFiy, =0: V(p) —Fsinp+Rcosp =0
V(¢p) = Fsinp—Rcose.
then defining the strain energy within cylindrical coordinates we get

I M((P)

o 2EI

Fig. 5.64

Castiliano’s theorem in cylindrical coordinates becomes

U _ 1 IM(w)aM(w)

- Rdg.
oR, EI R,

Ys =

while the deformation condition using Eq. (e) is as follows

oUu 1% M(p)

Yo == [ M(p) =2

Rde =0.
oR, EIY R,

Substituting Eq. (a) into our equation, we have
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0/2
j [RyR sing —FR(1—-cos @)|R sing dp =0,

0

Fig. 5.65

and we find the reaction at point B as

R, =2F. f)
T

Substituting Eq. (f) into Eq. (a), Eq. (b) and Eq. (c) we get

2 .
M(¢p) = —FR singp—FR(1—cos @)
T
. 2
V(@)= Fsinp——Fcosp
T
2 .
N(¢) =Fcos@+—Fsing
T

The diagram of the bending moment is shown in Fig. 5.66 where the local extreme is found from the

transversal load when its value is equal to zero

. 2
V( ¢ext) = F Sin ¢ext - FCOS (Dext = O
T
tan Pext = g = Pext = arctan (g] = 32480
T

T

The value of the bending moment in the extreme is
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M(32.48°) = 2FR sin32.48° — FR(1—cos 32.48°)
T

M(32.48°) = 0.186FR

The transversal force diagram is shown in Fig. 5.67 and the diagram of normal force is shown in the
Fig. 5.68.

Fig. 5.66 Fig. 5.67 Fig. 5.68
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Unsolved problems
Problem 5.12

For the beam loading according to Fig. 5.69, determine (a) the reaction at the supports, (b) the deflection
at point C, (c) the slope at point B. Use the following parameters: E = 210 GPa, I = 8.2 107 m*.

[R,, =0,R, =2500 N, R, =500 N, y, =—1.47 mm, ©, =—0.0036 rad]

Problem 5.13

For the beam and loading shown in Fig. 5.70, determine (a) the reaction at the supports, (b) the deflection
at point C, (c) the slope at point B. Assume: E = 210 GPa, I =7.2 107 m*.

[Ry =0,R; =5281.82 N, R;, =5118.18 N, y. =—14.1 mm, ©,, =—0.021 rad]

Fig. 5.69 Fig. 5.70

Problem 5.14

For beam and load shown in Fig. 5.71, determine (a) the reactions at the supports, (b) the deflection at

point D, (c) the slope at point B.

1 5 35wl 1wl
24 E1° % 6 EI

Problem 5.15

For the beam which is loaded according to Fig. 5.72, determine (a) the reaction at the supports, (b) the
deflection at point C, (c) the slope at point C.

M M 1 ML
R, =0,R,=—%, R, =——%, =0, 0, =——2
I: Bx BT c L Yc < 1 El }
Fig. 5.71 Fig. 5.72
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Problem 5.16

For the beam and load shown in Fig. 5.73, determine (a) the reaction at the roller support, (b) the

9M 1 MI1?
|:RB:__ o’yc 128 0 :|

deflection at point C.

8 L °° 128 EI

Problem 5.17
For the beam and load shown in Fig. 5.74, determine (a) the reaction at the roller support, (b) the

2 5 FL}
R,==F, y.=———
{ B30 YT g6 EI}

deflection at point C.

Fig. 5.73 Fig. 5.74

Problem 5.18
For the beam subjected to the moment in Fig. 5.75, determine (a) the reaction at point B, (b) the
deflection at point C.

3M M 1 MI?
R,=="—° M, =—2,y.=———2
[B 2 B ST EI}

Problem 5.19
For beam with the loading shown in Fig. 5.78, determine (a) the reaction at point B, (b) the deflection

at point C.
2 4 4 wi*
|:RB=3—WL, M, =—wL’, yC=—3—W }

25 3 75 EI

Fig. 5.75 Fig. 5.76
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Problem 5.20
For the beam with the load shown in Fig. 5.77, determine (a) the reaction at point C, (b) the deflection

at point C.

Fig. 4.77

I B Sweden
I B Sverige

LiNnkoping University -
iNnNovative, Nignly rankedg,
European

Interested in Engineering and its various branches? Kick-
start your career with an English-taught master’s degree.

LINKOPING
IIQ“ UNIVERSITY

154 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/liu

6 Columns

6.1 Introduction

Until now we have dealt with the analysis of stress and strain in structures acted on by specified loads
without any unacceptable deformations in the elastic region. Sometimes the structure can suddenly
change its configuration at a certain load level. After removing the load, the structure will return to its
initial configuration according to the condition of elastic response. The sudden change in configuration
represents the unstable mode of the structure deformation. To exclude unstable modes of deformations,
we need to gain knowledge about the stability of structures. That is, to determine the critical load which

corresponds to the initiation of the unstable deformation modes.

In this Chapter we are going to analyse only simple structures, in our case columns.

6.2 Stability of Structures

Fig. 6.1

Let us consider a column BC of length L with a pin connection at both ends, see Fig. 6.1. This column
is acted on by the centric axial compressive force F. Let us suppose that the design of the considered
column satisfies the strength condition Gy,4 < 04y and its deformation AL = FL/EA falls within
the given specification. What this means is that the column is designed properly. However, it might
happen that the column will lose stability and buckle and instead of remaining straight it will suddenly

curve sharply, see Fig. 6.2.
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Fig. 6.2

To understand the process of buckling, let us build a simple model of our column BC. This column
consists of two rigid rods BD and CD connected together at point D by a pin and the torsional spring
characterised by the spring constant K, see Fig. 6.3. If the applied load is perfectly aligned with the rods,
the presented system remains straight and stable, see Fig. 6.4(a). But if we move point D to the right
slightly, the rods will form a small angle A6, see Fig. 6.4(b). This state is unstable because, after removing
the applied load, the system will return to the initial stable mode by the action of the torsional spring.
It is not possible to find the critical load F . from the unbuckled state, therefore we must analyse the
buckled structure. For simplicity let us consider rod CD only, see Fig. 6.5. We can observe two couples
acting on the rod considered, namely the couple caused by forces F and F'and the couple M = K2A8
exerted by the spring. If the couple of forces F and F' is smaller than the couple M, then the system
tends to be in its initial stable configuration, i.e. in the equilibrium position. If couple M is smaller than
the force couple F and F/, then the system tends to move away from the equilibrium position to the
unstable configuration. If both couples are in equilibrium, then the corresponding load is the critical

load F . Then we can write
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Fig. 6.3
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Fig. 6.4

Fig. 6.5

E, (g) sin A§ = K2A80 6.1)

Assuming a small angular change where A8 = Af we get

F, = % (6.2)
For the load F < F_, the structure is in a stable state, i.e. there is no buckling. For an applied load of
F > F,, the structure is in an unstable state, i.e. the structure can buckle. Assuming the applied load
F > F,, the structure moves away from equilibrium and, after some oscillations, will settle in to its new
equilibrium position which will be different from its previous one. For this reason the simplification of

sin A@ = A6 cannot be valid anymore. Thus we need to solve the non-linear equation

F (g) sin A = K240 6.3)
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or

FL _ A8
4K~ sin A6 (6.4)

The last equation represents the problem of buckling equilibrium. This is out of our interest. We always

try to design structures which resist to buckling.

6.3 Euler’s formulas for Columns

Fig. 6.6

Let us consider the column BC of the length L with a pin connection at both ends, see Fig. 6.1 again.
This column is subjected to the centric axial compressive force F. Our task is to determine the critical
load F,

- Which causes buckling. Therefore we need to analyse the deformed rod, see Fig. 6.6. It can be

assumed that the column is a vertical beam. Then, applying the step-by-step approach, we can determine
the internal forces acting at the arbitrary point Q. The shape of the buckled column can be described as
an elastic curve. Mathematically we get

d’y _ M) _ _Fy

dx2 ~ Bl El (6.5)

or

d*y | Fy _
w2ty =0 (6.6)

Assuming that p? = F/EI we obtain
— +ply = (6.7)

The general solution of the above equation has the form
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y(x) = Asinpx + B cos px (6.8)

The integration constants A and B can be determined from the boundary conditions, which must be
satisfied at both ends. Firstly we make x = 0 then y = 0 and we find that B = 0. Secondly we make x =
L then y = 0 and we find that

AsinpL =0 (6.9)

This equation either has the solution A = 0, which does not make physical sense, or sin pL = 0. If

sinpL = 0 then pL = nm. Substituting for p? = F/EI and solving, we get

B (6.10)

The smallest value of the load F defined by the equation (6.10) is corresponding to = 1 , thus we obtain

the critical load

w2El

The expression above is well-known as Euler’s formula, Euler (1707-1783). Substituting Euler’s formula

into p2 = F/EI and then into equation (6.8) we have
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y(x) = AsinTx (6.11)

This is the elastic curve of a beam after it has buckled. The constant A can be determined from the

condition Yy, = A.

The corresponding critical stress can be calculated as

For _ m2EI
A AL (6.12)

O =

Setting I = Ar?, where 7 is the radius of gyration. Then we obtain

_ m?El _ n?EAr? _ mE _ n’E

Ocr = 12 A2 L/ 2 (6.13)

The quantity A = L/7 is the slenderness ratio.

Fig. 6.7

The validity of Euler’s formula can be extended to columns with different supports. Therefore we can
introduce the effective length L,, which generalises pin-ended columns with other types of columns.
Thus we can express the critical load and stress as follows

_ mw?El n’E n2E

Fo == and Ocr = We/r? — )2

(6.14)

The quantity A, = L, /7 is the effective slenderness ratio.
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Fig. 6.8

Let us consider a column BC of length L, fixed at C, and free at B, see Fig. 6.7. In this case we observe
that the column will behave like the upper part of the pin-ended column with an effective length of

L, = 2L, and an effective slenderness ratio of A, =2L/r.

Now considering the column BC of length L with both ends fixed, see Fig. 6.8. Then, due to the horizontal
symmetry at the point D, we get horizontal reactions at the supports which must be equal to zero. The
vertical tangents at points B, C, D to the elastic curve have zero slopes. Therefore there exists two inflexion
points E, F, where the bending moments are equal to zero, see Fig. 6.9. For the pin-ended column, the
bending moments at the supports are equal to zero too. Thus portion EF of the column behaves like the

pin-ended column with an effective length of L, = L /2, and an effective slenderness ratio of A = L/2r.

Fig. 6.9

Finally let us consider column BC of length L with one fixed end C and one pinned end B, see Fig.
6.10. In this case we must write the differential equation of the elastic curve in order to determine the
effective length. Therefore drawing the free body diagram with corresponding boundary equations, see
Fig. 6.11, then applying the method of section in order to obtain the bending moment at any arbitrary

point Q, we have
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Fig. 6.10

M(x) =—-Fy—Vx (6.15)
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substituting into equation (6.5) we get the differential equation of the elastic curve

Fig. 6.11

d’y _MG) _ —Fy-vx _ _Fy Vx

dx2  El ~ EI  El EI (6.16)
or

Ay By _ _Vx

dx2 ' EI  EI (6.17)
or

d%y 2. Vx

LI TPY=—74 (6.18)

Solving this equation requires the addition of solutions of the homogeneous equation (6.6) and the
particular solution of the non-homogeneous equation. The particular solution is determined by the
order of the polynomial function on the right side of equation (6.18). One can easily derive that this

particular solution is

VYpart = pZEIx = —EX (6.19)
Then the general solution of the equation (6.18) has the form

y(x) = Asinpx + B cospx — ;x (6.20)

This equation contains three unknowns: 4, B, V. Applying the boundary condition for point B as x = 0

then y = 0 we find that B = 0. Making the next conditions as x = L, y = 0 and Z_Z = (0 we obtain
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. v
AsinplL = B L (6.21)

and

v
A l==L
pCoSPt =F (6.22)

Dividing equation (6.21) by equation (6.22) we get

tanpl = pl (6.23)

Solving the above equation can be done by Newtonss iterative method, (for more details see A. Ralston

et al: A First Course in Numerical Analysis), as follows

Using p? = F/EI and solving for the critical load we get

_ 20.19E1
1? (6.25)

Fey

The effective length can be obtained by equating the right-hand sides of the equations (6.25) and (6.14)

n2El _ 20.19E]
iz 2 (6.26)

Solving this equation, we obtain the effective length for this case L, = 0.699L = 0.7L .

Then we can summarise the effective lengths for the various end conditions considered in this Section,
see Fig. 6.12.
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6.4

Design of Columns under a Centric Load

Fig. 6.12

In the previous Section we have derived a formula for calculating the critical stress as

_ n2E
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Fig.6.13

This equation shows that the critical stress is proportional to Young’s modulus of the column material,
and inversely proportional to the square of the slenderness ratio of the column. For a certain material,
i.e. for a given Young’s modulus, we will get the plot of the critical stress versus the slenderness ratio,
see Fig. 6.13. It is clear that for short columns, with low slenderness ratios, that the critical stress can
exceed both: the ultimate stress and the yield stress before reaching Euler’s critical stress. Therefore we
must modify the plot of the critical stress versus the slenderness ratio. For the illustration let us consider
steel with a Young’s modulus of E = 210 GPa, the ultimate stress ; = 190 MPa, and the yield stress

oy = 240 MPa Assuming that 0., = oy we can derive the minimum slenderness ratio

E 210000 MPa
Apin =T |— =7 |——" =104
oy 190 MPa

Fig. 6.14
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If the current stress is greater than the critical stress 0., i.e. A < Apin, then the material behaviour is
not elastic and we cannot apply Euler’s formula. For short columns which A4 < 4., the critical load
Fer is determined empirically using experimental results. These experimental results can be approximated

by Tetmayer’s curve (L. Tetmayer 1850-1905)

O-CT =a— Ab (6.28)

where @, b are the material constants. Then we get the limit curve of the critical stress versus the
slenderness ratio consisting of three regions, see Fig. 6.14. Region 1, limited by the yielding stress g,
is valid for short columns. Region 2, limited by Tetmayer’s curve, is valid for intermediate columns and

region 3, limited by Euler’s curve, is valid for long columns.

For the design of columns, we apply the buckling coefficients. These coeflicients are determined by STN
standards for a given material with a corresponding slenderness ratio. Thus the strength condition

Omax < Oy must be modified as

(6.29)

where B. C. is the buckling coefficient. Thus we can determine the allowable stress for centric loading to be

oAl

= (g ) .
B.C. All J centric (6.30)

6.5 Design of Columns under an Eccentric Load

Fig. 6.15
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Fig. 6.16

In this section we discuss the design of columns undergoing eccentric loading. Let us consider an eccentric
load applied in the plane of a column’s symmetry at an eccentricity of e, see Fig. 6.15. This eccentric load
F can be replaced with the axial force F and the couple M = Fe. Then the normal stress exerted on the
transverse section of the considered column can be expressed by superposing the axial load F and the
couple M, see Fig. 6.16. This is valid only if the conditions of Saint Venant’s principle are satisfied and
as long as the stresses involved do not exceed the proportional limit of the material. We can then write

the stress caused by the eccentric load to be

0 = Ocentric T Obending (6.31)
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The maximum compressive stress can be calculated as
_F | M
Omax = n + Tymax (6.32)

This maximum stress can not exceed the allowable stress in a properly designed column. To satisfy this

requirement we can apply two approaches: the allowable stress method or the interaction method.

The allowable stress method. This method is based on the assumption that the allowable stress for centric
loading is equal to the allowable eccentric loading. The design of the column must satisfy the strength

condition 0y,4, < Oy, Where ay; = ;_l; Then combining with the equation (6.32) we get

F M
N + Tymax < o (6.33)

Fig.6.17

The interaction method. This method is based on the assumption that the allowable stress for centric
loading is smaller than the allowable stress for bending. Therefore let us modify equation (6.33) by
dividing the value of allowable stress to obtain

F/A . MJI
—— +——Vmax = 1 (6.34)

oAl oAU

substituting the allowable centric stress in the first term and the allowable bending stress in the second

term we have

F/A M/I

+
(oA dcentric (oau )bending

Ymax S 1 (6'35)

This is known as the interaction formula.

When an eccentric load is applied outside of the plane of symmetry, it causes bending about two principal
axes, see Fig. 6.17. We then have a centric load F and two couples M, and M,. Thus the interaction

formula can then be modified as
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F/A IM, /1, My |/1y

Z <1 6.36
(0411 ) centric (oau )bending max (oau )bending max ( )
6.6 Examples, solved and unsolved problems
Problem 6.1

Fig. 6.18

Determine the critical load of the steel bar in Fig. 6.P1. The bar has a circular cross-section area with a
diameter D = 100mm and has a length of L = 5 m. Assume E = 200 GPa.

Solution

Fig. 6.19

The critical load can be calculated by using the differential equation of the deflection curve, which is

. M@
EI (a)

When the coordinate axes correspond to those in Fig. 6.19 the bending moment at point Q is found

from the equilibrium equation
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> M, =0: M(x) —-F(y,—y(x)) =

M(x) =F(y, ~y(x)) =F y, - F y(x)

The normal force at point Q is

> E =0: -F+F=0 = F'=F
then inserting the bending moment into Eq. (a), we have

y'(x) = 1I(F yo~F y(x ))=—y0——y( )

" 2 _ 1,2
Y0+ Ky(0) =Ky, )
where
L
EIl ()

The general solution of Eq. (b) is

y(x) = Acoskx + Bsinkx +y, )

in which A and B are constants of integration. These constants are determined from the following

boundary conditions

1. x=0,y=0,
2. x=0,y=0,
3. x=Ly=y,

From the first boundary condition, we get

0=AcoskO+BsinkO+y, = 4A=-y,

Using the next boundary condition, we find the first derivation of the deflection, which is

y'(x) = —Ak sin kx + Bk cos kx,

and setx =0,y =0, to get

0=-AksinkO+Bkcosk0 = B=0
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The condition at the upper end of the bar requires that y = y, when x = L, which is satisfied if
yocoskL =0 (e)

Equation (e) requires that either y, = 0 or ¢ogk = (- If y, = 0, there is no deflection of the bar and
hence no buckling (Fig. 6.18). If coskL =0, we must have the relation

KL =(2n-1)= ()

2
where n = 1, 2, 3.... This equation determines values of k at which a buckled shape can exist. The
deflection y, remains indeterminate and, for the ideal case, can have any value within the scope of small

deflection theory.

The smallest value of kL which satisfies Eq. (e) is obtained by taking n = 1. The corresponding value of

F will be the smallest critical load, and we have

KL=L, |~ -~
El 2

from which

v---vv-------v---v---vv--vv--vv--vvv--vv--ov--vv--vv--vvv--vv-cv---o--coAlcateluLUcent @
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_ 7’El
o4

and for the given value, we have

(g)

=6.2 MN.

ﬂ_zE(ﬂ'D“)

_— 7°El _ 32 ) _#°ED' _ 7’ (200x10° Pa)*(0.1 m)*
Y Py 417 417 4x(5m)’

Problem 6.2

The steel column is fixed at its bottom and is braced at its top by cables so as to prevent movement at

the top along the y axis, Fig. 6.20. If it is assumed to be fixed at its base, determine the largest allowable

load F that can be applied. Use a factor of safety for buckling of ES. = 2.5. Assume the parameters: E =
200 GPa, 0, = 250 MPa, L = 6 m, b =50 mm, h = 100 mm.

Solution

Buckling about the y and z axes is shown in Fig. 6.22 and Fig. 6.23, respectively.
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Buckling in the XY plane. For the solution, we use Fig. 6.22a and the differential equation of the deflection

curve, which is

_ M(x)
EI (a)

z

y'()
From Fig. 6.22b, using the equilibrium equation, we find the bending moment
> M, =0: M(x) +Fy(x)-R (L-x) =0

M(x) = -Fy(x)+R (L—x) )

X e<0, L>

Fig. 6.22
and axial force at point Q
> E =0: -F+F=0 = F'=F
Inserting Eq. (b) into Eq. (a), we get the differential equation

y'(x) = —k2y<x>+§(L—x),

z

where
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Finally, we have
" 2 R 2

y'(x)+k y(x):Fk (L—x). ()

The general solution of Eq. (c) is
) R

y(x):Acoskx+Bs1nkx+F(L—x) (d)

and the first derivative is

y'(x) = —A4k sin kx + Bk cos kx —%.

In this equation, we have three unknowns (A, B are integration constants and R is a reaction), which we

find from the following boundary conditions

1. x=0,y=0,
2. x=0,y =0,
3. x=Ly=0.

From boundary condition no. 1, we get
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O=AcoskO+Bsink0+%(L—0) = Az—%L.

From the second condition, we have

0:—AksinkO+Bkcosk0—% = B=—,

and from the last condition, we get

0= AcoskL + BsinkL

ELcoskL :EsinkL = kL =tankL
F kF (e)

The solution of Eq. (e) is found by numerical methods with the following result

KL =4.493 = k=$,

from which

_ T[ZEIZ (f)
™ (07L)"

The moment of inertia of a rectangular cross-section with respect to the z axis is

L, :%b noL :é(so mm)(100 mm)’ =4.166x10° mm*

The value of critical load in the XY plane is

n2(200><103 MPa)(4.166><106 mm4)
oy = - = F, ., =466.18 kN.
(0.7><6000 mm)
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Fig. 6.23

Buckling in the XZ plane.

The solution in this plane is the same as in Problem 6.1, where the critical load was solved by

n’El,

F,,=—2
(2L)

Cr Xz

The moment of inertia of a rectangular cross-section with respect to the y axis is

I :%h b’ I =%(1oo mm)(50 mm)’ =1.042x10° mm*

The critical load in the XZ plane is

n2(200><103 MPa)(4.166><106 mm“)
crxy = 2 = Fcrxy = 46618 kN
(0.7x6000 mm )

By comparison, as the magnitude of F increases the more the column will buckle within the XY plane.

The allowable load is therefore

_ E, 1428 kN _ 571 KN.

Fallow_ -
F.S. 2.5

Since

o =£—m =2.86 MPa <250 MPa

A 5000 mm>

Euler’s equation can be applied.
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Problem 6.3

Fig. 6.24

A steel column of length L and rectangular cross section has a fixed end at B and supports a centric load
at C. Two smooth, rounded fixed plates restrain the end of the beam (point C) from moving in one of
the vertical planes of symmetry, but allow it to move in the other plane. (a) Determine the ratio h/b of
the two sides of cross section which correspond to the most efficient design against buckling. (b) Design
the most efficient cross section for the column, knowing that L = 500 mm, E = 2.1 10° MPa, F = 1000
N, and that a factor of safety of 3.0 is required.
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Solution

Buckling in the XY plane. The critical load for this plane is defined by Eq. (6.14), which is

©’El, 7’El,

F =
L (0L

where
|
I.=—hb A=hb
12
and since
1
—hb’ 2
IZ:A]/‘Z }/2:I_Z:12—:b_ jr:i.
: * A  hb 12 12

The effective slenderness ratio, Eq. (6.14), of the column with respect to buckling in the xy plane is

L, 07L _0.712L

€

A == -
AR YN b @

Buckling in the XZ plane. The critical load for this plane is defined by Eq. (6.14), which is

n’El, @’El
Fcr Xy = 2 =
L)

[

where
1=Lbh3
712
and since
1
—bh’ 2
)|
I :A]/‘z }fz:_yzlz—:h_ :> rV:L.
Y Y » A  hb 12 12

The effective slenderness ratio, Eq. (6.14), of the column with respect to buckling in the xz plane will be

L, 2L 2JI2L
A, =—= = : (b)
r, W12 h
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a) The Most Effective Design. The most effective design is that for which the critical stresses
corresponding to the two possible modes of buckling are equal. We note that this will be the

case if the two values, obtained above, for the effective slenderness ratio are equal. So we can

write
A= 0.7-/12L _ 23121 b 074
Y ’ b h h 2

b) Design for the given data. Since a ES. = 3 is required.

F. =(F.S.) F=(3)(1000 N) =3000 N

Using b = 0.35 h, we have A=h b =h 0.35h = 0.35 h* and

F, 3000N
Ucrz = 2
A 035h (c)
Setting L = 500 mm in Eq. (b), we have
L, 2J12L 2412500 3464.10
oo h h h
where the critical stress is
©E E 7 (2.1x10° MPa)
O-cr: = =
A'(L,/r) (3464.10/h)’ @

comparing Eq. (c) and Eq. (d), we write

3000N 07 (2.1x10° MPa)
0.35h*  (3464.10/h)’

3000N  (3464.10)° i
0.35 62(2.1x105 MPa)

and have

h=14.93 mm, b=0.35h=0.35x14.93 mm =5.22 mm
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Problem 6.4

Fig. 6.25

The column in Fig. 6.25 consists of two different cross-section areas and has a length of L = 2 m. The

relationship between the moment of inertia of the first and second cross-section area is I = 41, . If the

bottom end is a fixed support while the top is free, determine the largest axial load which can be supported.
Use E = 210 GPa, [, = 0.15 10° mm*.
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Solution

Fig. 6.26

We divide this problem into two parts for its solution, because we have two parts with different cross-

section. Deflection of the column after an applied critical load is shown in Fig. 6.26.

Solution of the first part. X, € <0, L>

Fig. 6.27
From the equilibrium equation for the first part in Fig. 6.27, we have
D M, =0: M,(x,) —=F(y,—y,(x,)) =0
M, (x) =F(y, - y,(x,))=F y, —F y,(x,)
D> E =0: -F+F=0 = F'=F

The next step of the solution is to insert the bending moment into the differential equation of deflection

in the form

M, (x,)

" X —
yi(x,) EL

b
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and we have

, 1 F F
Y1(X1) :E(F Yo -F Y1(X1)) =—Y __Y1(X1)

| EI, El,
Y;’(Xl) = k12y0 _k12yl (X1)
yi(x)+kiy, (x,) =kiy,

where

The solution of Eq. (a) is as follows

y,(x,) = Acosk x, + Bsinkx, +y,

(a)

(b)

where A and B are unknown integration constants and y, is the unknown deflection of the column’s

free end.

Fig. 6.28

Solution of the second part. X, € <0, L>

The second part is shown in Fig. 6.28. The Unknown internal load is found from the equilibrium

equations, which are
zMin =0: M2(X2) _F(YO _Y2(X2)) =0

Mz(xz):F(YO _Y2(X2)):F Yo —F ¥,2(X,)
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D E, =0: —F+F=0 = F'=F

Using the bending moment M, (x,) and differential equation of beam deflection in the form

ya(xy) = %’?
from which

yi(x,) +ky, (x,) =k, (©)
where

K = 5

The general solution of Eq. (c) is

y,(x,)=Ccosk,x, + Dsink,x, +y, (d)

where C and D are unknown integration constants, which we find from the following boundary

conditions:
1. x2=0,y2=0,
2. x,=0,y,=0,
3. X, = 0, X, = L, y’1 = y’z,
4 x =0,x,=Ly =y,
5. x1=L,y1=0,

Using the first condition, we get

0=Ccosk,0+Dsink,0+y, = C=-y,.

Derivation of Eq. (d) is

y,(x,)=-Ck, sink,x, + Dk, cosk,X,,

Using the second condition, we have
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—Cksink,0+ Dkcosk,0 = D=0 fork, #0

In the same way, we find the derivation of deflection for the first part, which is

Y, (x,) = -4k, sink,x, + Bk, cosk,Xx,.

and for
x,=0,x,=L, y, =V,
we get
—Ak, sink, 0+ Bk, cosk,0 =—Ck, sink,L + Dk, cosk,L

Bk, =-Ck,sink,L = B=y, %sin k,L

1

Using condition no. 4, we have

Acosk,0+Bsink,0+y, =Ccosk,L+Dsink,L+y,,
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from which

A=-y,cosk,L.
and from the last condition, we get

k
k—‘ =tank,L tan k,L. (e)

2

Fig. 6.29

SinceI =41 is required, from which we have a ratio between k1 and k2

F
.
2 - 1 2 2
EL

Inserting this result into Eq. (e), we get

1

1_ tank,L tan 2k, L = 2tank L= ———.
2 tan 2k,L )

From the numerical calculation of Eq. (f) or from the graphical solution shown in Fig. 6.29, we have

kL =0421,

which we compare with equation

kL =an
from which
a= 0.134
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This result, we plug into the general equation for the solution of the critical load (Eq. (6.14)), we get

E - n’o’El, _ 0.177 EI,
cr L2 L2 :

For the given parameters, the critical load is

_0.177ElL, _ 0.177(210x10° MPa)(4x0.15x10°mm*)

Fcr 2 2
L (2000 mm)
F, =5.58 kN
Problem 6.5

Fig. 6.30

Determine the critical load of an aluminium tube shown in Fig. 6.30, which has a length L = 2.5 m and

an outer diameter of 100 mm and 16 mm wall thickness. Assume E = 70 GPa.
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Solution

Fig. 6.31

The first step of the solution is to determine the support reactions for the deformed column in Fig. 6.31.

From the following equilibrium equation, we find the reactions in the support.

> E =0: -F+R,,=0 = R, =F

(]
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Fy,

> M, =0: Fy, -R;L=0 = R, = =

Fy,
L

> M=0:Fy, —-R,L=0 = R, =

The problem consists of a two part solution.

The solution of the first part is in Fig. 6.32 for x, from 0 to L. At position x, we find the bending moment

M, and axial load F’ from the following equilibrium equations
ZMin = 0 . MI(XI) _RAx (_YI(Xl))_RAXI = O
Ml (Xl) = _RAXYI (Xl) + RAxl

Fy,

M, (x,)=-Fy,(x,)+ X (a)

D E, =0: -F+F=0 = F =F

X, € <0, L>
Fig. 6.32

We insert the result of Eq. (a) into the differential equation

 Mi(x)
Y EI

9

we then have
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Y(x)+ky, (x,) = kz%xl, (b)

where

Solution of the differential equation, Eq. (b), is

y,(x,) = Acoskx, + Bsinkx, jt%x1 (c)

and the first derivation of Eq. (¢) is

¥ (x,) =—Aksinkx, + Bk coskx, +%,

X, € <O, L>
Fig. 6.33

The solution of the second part is in Fig. 6.33 for x, from 0 to L. At position x,, we find the bending

moment M, and axial load F’ from the following equilibrium equations
ZMin =0: M,(x,) _F(YO - Y2(X2)) =0

Mz(Xz):F(YO_Y2(X2)):FYO_FY2(X2) (d)

D> E_ =0: -F+F=0 = F =F
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We substitute the result in Eq. (d) into the differential equation

" M, (x,)
X,)=—=—"=-,
¥ (X,) il
and have
yg(xz)+kZY2(X2) =k2§’o- (e)

The solution of the differential equation, Eq. (e), is
y,(x,) =Ccoskx, + Dsinkx, +y, (f)

and the first derivation of Eq. (f) is

y',(x,)=—Cksinkx, + Dk cos kx,.

The unknown integration constants A, B, C, D and the unknown deflection y, are found from the

boundary conditions:

L. x=0,y, =0,
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2. x,=0,y,=0,
3. x1=L,x2=0,y1=0,
4. x, =L x,=0,y, =Y,
5. x2=L,y2=0.

From the first boundary condition we have

O:AcoskO+BsinkO+%O = A4=0.

where from the second boundary condition we get

0=CcoskO+DsinkO+y, = C=-y,.

and from the third condition, we have

0=BsinkL+221 = B=--Y0_
L sinkLL

From condition no. 4, we get

— Ak sinkL + Bk coskL + % — _Cksin k0 + DK cos kO

from which

Yo coskL vy,
D=—"— =-—"—vy cotan kL.
kL 'sinkL kL °°

and finally from the last condition, we have

2cosklL = ﬁsin kL = 2kL =tankL

Fig. 6.34
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The numerical solution of Eq. (g) or from the graphical solution in Fig. 6.34, we get

kL =1.166
from which
1.35EI
E, = Tz ()

For the given parameters, we have

4
TED out

D! T 4 4
—2 =—|(100mm) —(68mm
64 64 64 [( ) ( ) }

and the critical load is

_1.35EI _1.35 (70x10°MPa) (3.86x10°mm*)

E

T (2500 mm)’
F, =58.4 kN
Problem 6.6

Fig. 6.35

Determine the critical load of the steel tube in Fig. 6.35, consider the following parameters: L = 4 m,
[ =7.794x10° mm*, E = 210 GPa.
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Solution

Fig. 6.36

X € <O, L>

In this problem, we divide into two parts, the buckling is only in the part in Fig. 6.36a, the second part
in Fig. 6.36b is without buckling, because in point B there is a pin support.
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From the moment at point B, we get

ZMiB:O: M,+Fy,=0 = M,=-Fy,

Fig. 6.37

Solution for the buckling part of Fig. 6.37, we find the internal load at point Q, which are the following

2 Mg =0: M(x) ~F(y,~y(x)) =0

M(x) =F(y, - y(x))=F y, - F y(x) (a)

D E =0: -F+F=0 = F'=F

For the calculation of the critical load, we use the differential equation of the deflection curved, which is

M(x)

" X) = ——2 b

y'(x) Bl (b)
After putting Eq. (a) into Eq. (b), we have

y'(0) + K y(x) =K%y, (©
where

K=t

EI

the solution of Eq. (c) is

y(x) = Acoskx + Bsinkx +y, (d)
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and its first derivation is

y'(x) = —Ak sinkx + Bk cos kx.

The unknowns integration constant A and B, are found from the boundary conditions

1. x=0,y=0,
2. x=0,y =g,
3. x=Ly=y,

From the first condition, we have

0=AcoskO+BsinkO+y, = A=-y,.

where from the third condition, we get

coskL
sinkL

0=-y,coskL+BsinkL = B=y,

In the second condition, we have an unknown slope j of the deflection curve at point B, which we find
from the second part in Fig. 6.38a. Using Castigliano’s theorem for the solution, the bending moment
M(x) at point Q in Fig. 6.38b is

D M=0: Mx)+M;-Ryx =0 = M(x)=R x—M,

X e<0, L>

Fig. 6.38
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Columns

In this equation, the reaction R is unknown, which we find from the equilibrium at point A in Fig. 6.19a,

DM, =0: —M,+R,L =0 = Rgz%

The strain energy in bending, from the Appendix, is defined as

LM2
:szI

0

dx

and Castigliano’s theorem is

L 2 L
o= oU _ 0 J-M(X) dx :LJ‘M(X)aM(X) dx
oM, oM,y 2EI EIly oM,
After the solution, we have
L
gozi s RS (R dx:MBL
EIy L 3EI
¢ ——F yOL = —1(2 E
3EI 3

(A.31)

(e)
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Now, we insert the result from Eq. (e) to the second boundary condition, and get

coskL
sinkL

kL =-3

= -3 cotan kL ()

Fig. 6.39

After the numerical solution, or from the graphical solution in Fig. 6.39, we get

kL =2.205 = a:k—L=0.702
T

We insert this result into the general equation for the solution of the critical load (Eq. (6.14)) and get

m*a’El  4.862 EI
cr L2 = L2

For the given parameters, the critical load is

4862 E1 4.862 (210x10° MPa)(7.794x10° mm*)
v (4000 mm)’

F, =497.4 kN
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Problem 6.7

Fig. 6.40
Determine the critical load for the column in Fig. 6.40.
L, E and I are given.

Solution

X, € <O, L>

Fig. 6.41

First we solve for the reaction in the deformed column, see Fig. 6.41a. From the free body diagram and

the following equilibrium equations, we find the reactions at the support, which are
> E =0: -F+R, =0 = Ry =F,

> E,=0:R,+R;=0 = R, =R,
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This problem is symmetric, from this condition we denote M as the moment in the supports A and B,

that is

From the equilibrium of the moments at point B, we get

> My=0: M;-M, -R,4L=0 = R, =0

The solution is divide into two parts, which is show in Fig. 6.41b, because we are using an axis of symmetry.

X, € <O, L>
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OUT THERE

Click to hear me talking

before and after my

unique course download

201 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/EOT

Fig. 6.42

Solution of the first part in Fig. 6.42.

At location x| in point Q,, we find the bending moment M, (x,) and axial force F’ from the following

equilibrium equation
Z:N[iQl =0: M,(x,) +Fy,(x;) —-M=0
M, (x))=-Fy (x,)+M (a)

D> E =0: -F+F=0 = F'=F

Inserting Eq. (a) into the differential equation of the deflection curve

n_ Mi(x)
" El, ’
from which
X, € <O, L>

Fig. 6.43
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y"(x) + kIZYI (x,)= k12 %’ (b)

where

The solution of Eq. (b) is

y,(x,) = Acosk x, + Bsink,Xx, +% (c)
and the first derivation is

v (x,) =—4k, sink x, + Bk, cosk x,.

Solution of second part in Fig. 6.43.

The bending moment M,(x,) and axial force F* we obtain from the following equilibrium equation
zMin =0: M,(x,) +Fy,(x,)-M=0

Mz(xz) =-F Y2(X2)+M

(d)
D> F_=0: -F+F=0 = F =F
inserting Eq. (d) into the differential equation of the deflection curve
. M, (x,)
X,)=—""==
¥2(X,) EL
from which
" M
Y (x,)+ k§Y2 (x,)= ki =
F ()
where
F F
kKi=—=—
El, 3EI
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The solution of Eq. (b) is

y,(x,) =Ccosk,x, + Dsink,Xx, +% (f)
and its first derivative is

y,(x,)=-Ck,sink,x, + Dk, cos k,x,

To find the unknown integration constants A, B, C, D and the moment at the support M, we use the

following boundary conditions

XI:O,YI:O
. x2=L,y'2:0

1.
2
3, x1=L,x2=0,y1=y2
4. x,=Lx,=0,y, =Yy,
5

. x,=0,7,=0
After using all boundary conditions, we have the following results:

1. O:Acosk10+Bsink10+M = A:—M

The Wake
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5. 0=-4k,sink,0+ Bk, cosk,0 = B=0

2. 0=-Ck,sink,L+ Dk, cosk,L

sink,L
cos k,LL

D=C =Ctank,L

3. Acosk1L+Bsink1L+%:Ccosk20+Dsink20+%

C=Acosk,L= —%cosle
4. — Ak, sink L+ Bk, cosk,L =-Ck, sink,0+ Dk, cos k,0

%tan k,L =—tank,L

2

Fig. 6.44
Setting a ratio between k and k, in the form
B
2
KB Loy i [Tk
k; F L L I 3
EIL,

And inserting into Eq. (g) we get

V3 tan kL= —tanﬁL

NE)
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We solve Eq. (f) by the numerical method or the graphical method shown in Fig. 6.44, the result is

kL =an=2.13 = (1=kl—L=0.678
T

Critical load is

m*a’El  4.54 EI
F, = oo

Unsolved problems
Problem 6.8

Determine the critical load for the column in Fig. 6.45. L = 5 m, I = 3.457x10° mm®*,
E =200 GPa is given.
[F_=39.3kN]

Problem 6.9
Determine the critical load for an aluminum column shown in Fig. 6.46. L = 1.5 m,
I =5.325x10° mm*E = 70 GPa is given.
[F, = 134.6 kN]
Problem 6.10

Determine the critical load for a brass column shown in Fig. 6.47. L = 2m,
I =9.436x10° mm*E = 120 GPa is given.
[F_ = 244.4 kN]

Fig. 6.45 Fig. 6.46 Fig. 6.47
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Problem 6.11

Determine the critical load for a steel column shown in Fig. 6.48. L = 1.5 m, I = 4.91x10° mm*E = 210
GPa is given.
[F_ = 604.7 kN]

Fig. 6.48
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Appendix

A1l Centroid and first moment of areas

Fig. A.1

Consider an area A located in the zy plane (Fig. A.1). The first moment of area with respect to the z

axis is defined by the integral
Q. = {y d4 (A1)

Similarly, the first moment of area A with respect to the y axis is

0, = J z d4 (A2)

A

If we use SI units are used, the first moment of Q and QY are expressed in m® or mm?®.

Fig.A.2

The centroid of the area A is defined at point C of coordinates j and Z (Fig. A.2), which satisfies the

relation

[y o
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z dA4

A C—y

N|
I

A3
y (A.3)

Fig.A.3
When an area possesses an axis of symmetry, the first moment of the area with respect to that axis is zero.

Considering an area A, such as the trapezoidal area shown in Fig. A.3, we may dividethe area into
simple geometric shapes. The solution of the first moment Q, of the area with respect to the z axis can

be divided into components AL A, and we can write

szj;ydAZJydAJrJydA:ZEAi (A.4)

Solving the centroid for composite area, we write

y= ﬁ y (A.5)

Example A.01

Fig.A.4

For the triangular area in Fig. A.4, determine (a) the first moment Q, of the area with respect to the z
axis, (b) the y ordinate of the centroid of the area.
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Solution

(a) First moment Q

Fig. A.5

We selected an element area in Fig. A.5 with a horizontal length u and thickness dy. From thesimilarity

in triangles, we have

h-y
h

1
b

4
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and

dA:udyzb%dy

using Eq. (A.1) the first moment is

(b) Ordinate of the centroid

1
Recalling the first Eq. (A.4) and observing that 4 = Ebh , we get

0 =4y = = %bhzzébhzy = y==h

W |~

A2 Second moment, moment of areas

Consider again an area A located in the zy plane (Fig. A.1) and the element of area dA of coordinate y

and z. The second moment, or moment of inertia, of area Awith respect to the z -axis is defined as
2
1= Iy d4 (A.6)
A

Example A.02

Locate the centroid C of the area A shown in Fig. A.6

Fig. A.6
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Solution

Selecting the coordinate system shown in Fig. A.7, we note that centroid C must be located on the y

axis, since this axis is the axis of symmetry thanz =0.

Fig.A.7

Dividing A into its component parts A and A, determine the y ordinate of the centroid, using Eq. (A.5)

_AF Ay, _(208t)x Tt (40x6t)x 3t 184¢° a6t
A+ A, 2tx8t + 4tx6t 40t7

<

Similarly, the second moment, or moment of inertia, of area A with respect to the y axis is

I,=[z"dd4. (A7)

A

We now define the polar moment of inertia of area A with respect to point O (Fig. A.8) as the integral

J,=[p* dd, (A.8)
A
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Fig. A.8

where p is the distance from O to the element dA. If we use SI units, the moments of inertia are expressed

in m* or mm*.

An important relation may be established between the polar moment of inertia J of a given area and

the moment of inertia I and I of the same area. Noting that P> =" +2", we write

J, =Ip2 dA=J.(y2+zz)dA=J.y2 dA+Iz2 d4
A A A A

Ijoined MITAS because e e

I wanted real responsibility www.discovermitas.com

I'was a construction
SUPErvisor in
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% solve problems
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or
J,=1+1, (A.9)

The radius of gyration of area A with respect to the z axis is defined as the quantity r, that satisfies the

I.=rl4 = r.= \/% (A.10)

In a similar way, we defined the radius of gyration with respect to the y axis and origin O. We then have

relation

2 )
Iy:ryA = = j (A.11)

J

J, =1r’Ad = 1= (A.12)

S o

Substituting for J, I and I in terms of its corresponding radi of gyration in Eg. (A.9), we observe that

¥ (A.13)

Example A.03

For the rectangular area in Fig. A.9, determine (a) the moment of inertia I of the area with respect to

the centroidal axis, (b) the corresponding radius of gyration r,.

Fig. A.9

Solution

(a) Moment of inertia I.We select, as an element area, a horizontal strip with length b and thickness

dy (see Fig. A.10). For the solution we use Eq. (A.6), where dA = b dy, we have
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Fig. A.10

(b) Radius of gyration r . From Eq. (A.10), we have

|
]/'Z= _— = —_— = —_— j— }"Z=—
2 Ve V2 Ji2

Example A.04

For the circular cross-section in Fig. A.11. Determine (a) the polar moment of inertia / , (b) the moment

of inertia I and Iy.

Fig. A.11
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Solution
(a) Polar moment of Inertia. We select, as an element of area, a ring of radius p and thickness dp (Fig.

A.12). Using Eq. (A.8), where dA = 2 np dp, we have

D/2 D/2

J0=I,02 d4 = Ip22ﬂpdp=2ﬂjp3dp,
A 0 0

4
J0:6D ‘
32

Fig. A.12

(b) Moment of Inertia. Because of the symmetry of a circular area I = I . Recalling Eg. (A.9), we can write

www.job.oticon.dk Otl con

PEOPLE FIRST
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J=L+1,=21, = [ =20-32

2 2
4
=1 ="2"
y 64
A3 Parallel axis theorem
Fig. A.13

Considering the moment of inertia I of an area A with respect to an arbitrary z axis (Fig. A.13). Let us
now draw the centroidal z’ axis, i.e., the axis parallel to the z axis which passes though the area’s centroid
C. Denoting the distance between the element dA and axis passes though the centroid Cby y’, we write

y =y + d. Substituting for y in Eq. (A.6), we write

L=[y dd=[(y+d) d4,
A

A

L=[y?dd+2d[y' dd+d’| dd,
A A

A

I.=1.+0.+Ad’ (A.14)

where I, is the area’s moment of inertia with respect to the centroidal z’ axis and Q, is the first moment
of the area with respect to the z” axis, which is equal to zero since the centroid C of the area is located

on that axis. Finally, from Eq. (A.14)we have

T 2
I.=1. +A4d (A15)

A similar formula may be derived, which relates the polar moment of inertia ] of an area to an arbitrary
point O and polar moment of inertia J . of the same area with respect to its centroid C. Denoting the

distance between O and Cby d, we write

J,=J.+Ad’ (A.16)
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Example A.05

Determine the moment of inertia I of the area shown in Fig. A.14 with respect to the centroidal z axis.

Fig. A.14

Solution

The first step of the solution is to locate the centroid C of the area. However, this has already been done

in Example A.02 for a given area A.

We divide the area A into two rectangular areas A and A, (Fig. A.15) and compute the moment of

inertia of each area with respect to the z axis. Moment of inertia of the areas are

Iz =Izl +122

where [ is the moment of inertia of A, with respect to the z axis. For the solution, we use the parallel-

axis theorem (Eq. A.15), and write

[zl = Tz + A1d12 = éblh? +b1h1d12

z

Ilzéx& x (2t)° +8tx 2t x (7t — 4.6t)°

1,=97.5t
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Fig. A.15

In a similarly way, we find the moment of inertia I, of A, with respect to the z axis and write

122 = Tz + Azdg = ébzhg + bzhzdg

I,= %x 4t x(6t)° +4tx 6tx (4.6t —3t)°
I,=1334t"

The moment of inertia I of the area shown in Fig. A.14 with respect to the centroidal z axis is
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I =1,+1_,=97.5t"+133.4t" =230.9t".

Example A.06

Fig. A.16

Determine the moment of inertia I, of the area shown in Fig. A.14 with respect to the centroidal z axis

and the moment of inertia I of the area with respect to the centroidal y axis.

Fig. A.17

Solution

The first step of the solution is to locate the centroid C of the area. This area has two axis of symmetry,

the location of the centroid C is in the intersection of the axes of symmetry.

Download free eBooks at bookboon.com



Fig. A.18

We divide the area A into three rectangular areas AL A, and A, The first way we can divide area A can

be seen in Fig. A.17, a second way can be seen in Fig. A.18.

Solution the division of area A by Fig. A.17 (the first way) themoment of inertia I is

[z :]zl +122 +[z3’

where

I,=1.+Ad = éblhf +bhd; =...=196t",
- 1

I,=1+A,d= Ebzhg +b,h,d} =... =36t",

I,=1L.+Ad}= %b3h§ +bsh,d] =...=196t".

Resulting in

I=1,+1,+1,=196t"+36t* +196t* =428t

For the moment of inertia Iy we have

I,=1,+1,+1;,

where

—h,b} :éx2tx(6t)3 =36t",
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- 1 3 l 3 4
1y2 zly :Ehzb2 =Ex6t><(2t) =4t 5

- 1 3 1 3 4
I,=1, :Eh3b3 :EXth(6t) =36t".

Resulting in

4 4 4 4
I, =1,+1,+1,=36t"+4t" +36t" =76t".

The solution for the division of area A according to Fig. A.18 (by the second way) the moment of inertia I is

]z :Izl _122 _[z3’

where
- 1 3 l 3 4
I, =1, =—bhj =—x6tx(10t)" =500t",
12 12
L,=T =—b,hd =~ x2tx(6t) =36t*
z2 z 12 272 12 >
I B Sweden

I B Sverige
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=1 =—b,h; =LX2tX(6t)3 =36t".
12
Resulting in
I=1,-1,-1,=500t"-36t"-36t" =428t".

For the moment of inertia Iy we have

Iy :Iy1—1y2—1y3,
where

- 1 3 1 3 4
a=1 :Eh,b1 :EXIOtx(6t) =180t*,

1,=1, =%h2b; +h,b,d} =%><6tx(2t)3 +6tx2tx(2t)" =52t

Resulting in

1,=1,—-1,-1,=180t"-52t"-52t* = 76t".

Example A.07

Fig. A.19
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In order to solve the torsion of a rectangular cross-section in Fig. A.19, we defined (See S.P. Thimoshenko
and J.N. Goodier, Theory of Elasticity, 3d ed. McGraw-Hill, New York, 1969, sec. 109) the following

parameters for b>h:

J=vyb’h,
S, =a b’ h,
S,=Bbh,

where parameters a, B and y are in Tab.A.1.

The shearing stresses at point 1 and 2 are defined as

T _
lez—maxz_’ TZ__’
Sl
where T is the applied torque.
Tab.A.1
h/b | 1 1.2 L.5 2 3 5 10 >10
o |0.208 |0.219|0.231 | 0.246 | 0.267 | 0.291 | 0.313 | 1/3
0.208 | 0.196 | 0.180 [ 0.155] 0.118 | 0.078 [ 0.042 | O
Y 0.1404 | 0.166 | 0.196 | 0.229 | 0.263 | 0.291 | 0.313 | 1/3

A4 Product of Inertia, Principal Axes

Definition of product of inertia is

Iyzzjyz
A

d4

(A.17)

(A.18)

(A.19)

(A.20)

(A.20a)

in which each element of area dA is multiplied by the product of its coordinates and integration is

extended over the entire area A of a plane figure. If a cross-section area has an axis of symmetry which

is taken for the y or z axis (Fig. A.19), the product of inertia is equal to zero. In the general case, for

any point of any cross-section area, we can always find two perpendicular axes such that the product

of inertia for these vanishes. If this quantity becomes zero, the axes in these directions are called the

principal axes. Usually the centroid is taken as the origin of coordinates and the corresponding principal

axes are then called the centroidal principal axes.
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Fig. A.19a

If the product of inertia of a cross-section area is known for axes y and z (Fig. A.19a) thought the centroid,

the product of inertia for parallel axes y’ and z’ can be found from the equation
I,.=1,+Amn. (A.20b)
The coordinates of an element dA for the new axes are

y'=y+n; z'=z+m.
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Hence,

I,. =Iy'z'dA=I(y+n)(z+m)dA=Iysz+ImndA+IymdA+Inz ddA.
A A A A A A

The last two integrals vanish because C is the centroid so that the equation reduces to (A.20b).

A5 Strain energy for simple loads

Fig. A.20

Consider a rod BC of length L and uniform cross-section area A, attached at B to a fixed support. The
rod is subjected to a slowly increasing axial load F at C (Fig. A.20). The work done by the load F as it is
slowly applied to the rod must result in the increase of some energy associated with the deformation of

the rod. This energy is referred to as the strain energy of the rod. Which is defined by
Strain energy =U = IOXF dx (A.21)

Dividing the strain energy U by the volume V = A L of the rod (Fig. A.20) and using Eq. (A.21), we have

U ¢~ F
7: OH dx (A.22)

Recalling that F/A represents the normal stress o_in the rod, and x/L represents the normal strain e,

we write

U ¢
v IO o, dg, (A.23)

The strain energy per unit volume, U/V, is referred to as the strain-energy density and will be denoted

by the letter u. We therefore have

u= J.g o, de, (A.24)
0
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A.5.1 Elastic strain energy for normal stresses

In a machine part with non-uniform stress distribution, the strain energy density u can be defined by

considering the strain energy of a small element of the material with the volume AV. writing

u=lim AU u du (A.25)
= — oru=—-r. .
MU AY dv
for the value of o_within the proportional limit, we may set 0, = E ¢ _in Eq. (A.24) and write
1., 1 o,
u= EESX - Ecxsx - 2E " (A26)

The value of strain energy U of the body subject to uniaxial normal stresses can by obtain by substituting
Eq. (A.26) into Eq. (A.25), to get

(,)X
U=[zdr. (A27)

Elastic strain energy under axial loading

When arodisacted on by centric axial loading, the normal stresses are o, = N/A from Sec. 2.2. Substituting

for o_into Eq. (A.27), we have

N2 L N2
U =I2EA2 dV or, setting dV = 4 dV/, U :I2EA dv (A28)

0

If the rod hasa uniform cross-section and is acted on by a constant axial force F, we then have

2
L
U_N

= A29
2EA ( )

Elastic strain energy in Bending

The normal stresses for pure bending (neglecting the effects of shear) is 6 = My /I from Sec. 4. Substituting
for o_into Eq. (A.27), we have

2.2
U=[ dV:jMy2 v
2E 2El (A.30)

Setting dV = dA dx, where dA represents an element of cross-sectional area, we have

L
o]

2 L 2

(IydA)dx=!§éI

M d
2EI X (A31)
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Example A.08

Fig. A.21

Determine the strain energy of the prismatic cantilever beam in Fig. A.21, taking into account the effects

of normal stressesonly.

Solution

The bending moment at a distance x from the free end is M = —F x . Substituting this expression into

Eq. (A.31), we can write

L a2 L 2 213
J-M q =I(Fx) i FL
02E] 0 2E] 6E/

A5.2 Elastic strain energy for shearing stresses

Ahen a material is acted on bv plane shearing stresses e strain-enerov depsitv at a given noint can
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7
u= J‘z'xy dy,,, (A.32)
0

where Yy 18 the shearing strain corresponding to T, For the value of T, within the proportional limit,

we have 1= G y_, and write
xy xy’

2

1 1 T
= — G 2 =—7 = Xy . (A.33)
2 P 2 ol 2G

Substituting Eq. (A.33) into Eq. (A.25), we have

2
T
_ Xy
U= j = av . (A.34)

Elastic strain energy in Torsion

The shearing stresses for pure torsion aret, = Tp /] from Sec. 3. Substituting for T _ into Eq. (A.27),

we have

2 252
v=] ;G =] 22EJ2 (439

Setting dV = dA dx, where dA represents an element of the cross-sectional area, we have

L T2 L T2
“Jar UpZdA)dX:-bGJ .

(A.36)
In the case of a shaft of uniform cross-sectionacted on by a constant torque T, we have
T°L
= (A.37)
2GJ

Elastic strain energy in transversal loading

If the internal shear at section x is V, then the shear stress acting on the volume element, having a length

of dx and an area of dA, is T = V Q /I t from Sec. 4. Substituting for t into Eq. (A.27), we have

1 (Vv t
- ool (F o B a)e

The integral in parentheses is evaluated over the beam’s cross-sectional area. To simplify this expression

we define the form factor for shear

= izj. (A.39)
A
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Substituting Eq. (A.39) into Eq. (A.38), we have

L V2
U= [f; oq & (A.40)

0

Fig. A.22

The form factor defined by Eq. (A.39) is a dimensionless number that is unique for each specific cross-
section area. For example, if the beam has a rectangular cross-section with a width b and height h, as
in Fig. A.22, then

t=>, A=bh, I=—bh’
12
E—y
. > h b(h*
=7A'=|y+ ——y|==| —-
0=y y (2 yj 2(4 y

Substituting these terms into Eq. (A.39), we get

7= bh b2 (hz
=

6
Ny bdy=2
£1bh3j2"'/24b2 4 y} 775 (A41)
12

Example A.09

Fig. A.23

Determine the strain energy in the cantilever beam due to shear if the beam has a rectangular cross-

section and is subject to a load E Fig. A.23. assume that EI and G are constant.
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Solution
From the free body diagram of the arbitrary section, we have

V(x)=F.

Since the cross-section is rectangular, the form factor f = g from Eq. (A.41) and therefore Eq. (A.40)

becomes

(6 F  3FL

shear = X
15264 5G4

Using the results of Example A.08, with A=bh, I = %b h?, the ratio of the shear to the bending strain

energy is
3FL
Ushear _ g& _ih_ZE
Upine FL 107G
6E/
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Since G = E / 2(1+n) and n = 0.5, then E = 3G, so

Upew _31°3G_9 0
Upiing 1012 G101

It can be seen that the result of this ratio will increasing as L decreases. However, even for short beams,
where, say L = 5 h, the contribution due to shear strain energy is only 3.6% of the bending strain energy.

For this reason, the shear strain energy stored in beams is usually neglected in engineering analysis.
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